
Resource Control in J-SEAL2
�

Walter Binder
CoCo Software Engineering GmbH, Margaretenstr. 22/9, A-1040 Vienna, Austria

E-mail: w.binder@coco.co.at

Jarle G. Hulaas
University of Geneva, rue G�en�eral Dufour 24, CH-1211 Geneva 4, Switzerland

E-mail: Jarle.Hulaas@cui.unige.ch

Alex Villaz�on
University of Geneva, rue G�en�eral Dufour 24, CH-1211 Geneva 4, Switzerland

E-mail: Alex.Villazon@cui.unige.ch

Cahier du CUI No 124
Technical Report, version of 2001/01/03

Abstract

Resource control, i.e., accounting and limiting the consumption of physical resources like CPU and

memory, and of logical resources like threads, is necessary for distributed agent systems to execute

securely. This is however a missing feature on standard Java platforms. Moreover, prevailing approaches

to resource control in Java require substantial support from native code libraries, which is a serious

disadvantage with respect to portability, since it prevents the deployment of applications on large-scale

heterogeneous networks. This report describes the model and implementation mechanisms underlying

the new resource-aware version of the J-SEAL2 mobile agent kernel. The resource control model is based

on a set of requirements, where portability is very signi�cant, as well as a natural integration with the

existing programming model. The implementation consists of a combination of Java byte-code rewriting

with well-chosen enhancements in the J-SEAL2 kernel. Realization of a resource control system may

be prompted by motivations such as the need for application service providers to guarantee a certain

quality of service, or to create the support for usage-based billing. In this report the design strategy is

however focussed on security, and more speci�cally on preventing denial-of-service attacks originating

from mobile agents running on the platform. Initial performance measurements are also presented, which

back our approach.

Target Audience

This report is suitable for developers of Java applications who are interested in resource control issues,

and it gives some general guidelines on how to achieve a completely portable implementation. Whereas

J-SEAL2 is primarily designed for mobile agents, the approach described here is directly applicable to

many other distributed programming paradigms practiced in Java.

�This work was funded by CoCo Software Engineering GmbH and the Swiss National Science Foundation grants 20-

54014.98 and 5003-057753.

1



2 OBJECTIVES AND RESULTING MODEL 2

1 Introduction

Java [14] was designed as a general-purpose pro-

gramming language, with special emphasis on

portability in order to enhance the support of

distributed applications. Therefore, it is natural

that access to low-level, highly machine-dependent

mechanisms were not incorporated from the begin-

ning. New classes of applications are however be-

ing conceived, which rely on the facilities o�ered

by Java, and which at the same time push and un-

cover the limits of the language. These novel ap-

plications, based on the possibilities introduced by

code mobility, open up traditional environments,

move arbitrarily from machine to machine, execute

concurrently, and compete for resources on devices

where everything from modest to plentiful con�gu-

rations can be found. We are therefore witnessing

increased requirements regarding fairness and se-

curity, and it becomes indispensable to acquire a

better understanding and grasp of low-level issues

such as resource management.

Operating system kernels provide mechanisms to

enforce resource limits for processes. The sched-

uler assigns processes to CPUs re
ecting process

priorities. Furthermore, only the kernel has access

to all memory resources. Processes have to allo-

cate memory regions from the kernel, which veri-

�es that memory limits for the processes are not

exceeded. Likewise, a mobile agent kernel must

prevent denial-of-service attacks, such as agents al-

locating all available memory. For this purpose, ac-

counting of physical resources (i.e., memory, CPU,

network bandwidth, etc.) and logical resources

(i.e., number of threads, number of protection do-

mains, etc.) is crucial.

Whereas J-SEAL2 [5, 6] is primarily designed

for mobile agents, the approach described here is

directly applicable to many other distributed pro-

gramming paradigms practiced in Java, since mo-

bile agent technology is a very general one. J-

SEAL2 is thus perfectly �tted to serve as a secure

execution platform for Java applets, or traditional

distributed applications, where strong protection

domains and resource control mechanisms are of-

ten needed. Further use cases include technologies

such as World-Wide-Web server extensions (Java

servlets [20]) and Java application servers (e.g., En-

terprise JavaBeans containers [19]).

The great value of resource control is that it is

not restricted to serve as a base for implementing

security mechanisms. Application service providers

may e.g. need to guarantee a certain quality of

service, or to create the support for usage-based

billing, in order to amortize investments in hard-

ware and software set at customers' disposal. The

basic kernel extensions described here will be nec-

essary to schedule the quality of service or to sup-

port the higher-level accounting system, which will

bill the clients for consumed computing resources.

This report is however restricted to the kernel ex-

tensions that were necessary to add resource control

to J-SEAL2; faithful to the micro-kernel approach,

J-SEAL2 relegates to the higher levels the mecha-

nisms which do not absolutely have to be part of

the kernel.

This report is organized as follows. The next

section presents the design goals and the result-

ing resource control model, and section 3 the corre-

sponding APIs. Section 4 explains our implementa-

tion techniques, for which section 5 presents some

initial performance measurements. Section 6 com-

pares our approach with related work, whereas sec-

tion 7 gives a glimpse on future investigations and

concludes the report.

2 Objectives and Resulting

Model

The ultimate objective of this work is to enable

the creation of execution platforms where anony-

mous agents, or more general programs, may se-

curely coexist without harming each other, and

without harming their environment. Examples of

such platforms are user-extensible databases [13]

or decentralized e-commerce and trading systems

as e.g. in [15]. Java applet execution platforms {

World-Wide-Web browsers { as well as embedded

Java devices also need such guarantees. The desire

to deploy this kind of platforms translates into the

following requirements:

� SuÆciently abstract concepts, in order to make

mapping of policies into implementations more

straightforward, and with a view to making re-

source control and eventual billing more man-

ageable.

� Accounting of low-level, physical resources as



2 OBJECTIVES AND RESULTING MODEL 3

Mobile
Agents

Services Stationary Agents

Root
Seal

Agent
Manager

E-mail
Service

GUI
Service

Naming
Service

Net
Service

Sandbox
Trusted

Sandbox
Anonym.

Mobile
Agent 2

Mobile
Agent 3

Mobile
Agent 1

Figure 1: J-SEAL2 nested protection domains.

well as higher-level, logical resources, such as

threads.

� Prevention against denial-of-service attacks,

be they based on CPU, memory, or commu-

nication misuse.

� Fair distribution of resources among concur-

rent domains, even outside the context of ma-

licious activities.

� Fine-grained load-balancing of mobile agent

applications on a cluster of machines.

Since some aspects of resource control are to be

manageable by the application developer, it is im-

portant that the general model integrate well with

the existing J-SEAL2 programming model [5]. The

J-SEAL2 kernel manages a tree hierarchy of nested

protection domains, which may be either agents or

service components. Each agent and service ex-

ecutes in a protection domain of its own, called a

sealed object or seal for short. Figure 1 shows some

frequently used service seals. This model of hierar-

chically organized protection domains stems from

the JavaSeal mobile agent kernel [8].

The resource control facilities shall re
ect the hi-

erarchical system structure. Hierarchical process

models have been used successfully by operating

system kernels, such as the Fluke micro-kernel [11].

The Fluke kernel employs a hierarchical scheduling

protocol, CPU Inheritance Scheduling [12], in or-

der to enforce scheduling policies. In this model, a

parent domain donates a certain percentage of its

own CPU resources to a child process. Initially, the

root of the hierarchy possesses all CPU resources.

A generalization of CPU Inheritance Scheduling

�ts very well to the J-SEAL2 hierarchical domain

model. At system startup the root domain, Root-

Seal, owns by default all physical and logical re-

sources, for example 100% CPU, the entire virtual

memory, unlimited network usage, the maximum

number of threads the underlying Java Virtual Ma-

chine (JVM) [16] is able to cope with, an unlimited

number of subdomains, etc. Moreover, the root

domain, along with the other domains loaded at

platform startup, are considered as completely safe,



2 OBJECTIVES AND RESULTING MODEL 4

and, consequently, no resource accounting will be

enforced on them. This default behavior may how-

ever easily be overridden if speci�c con�gurations

should require accounting even for trusted domains.

When a nested protection domain is created, the

creator donates some part of its own resources to

the new domain. Figure 2 illustrates the way re-

sources are either shared or distributed inside a seal

hierarchy. In the formal model of J-SEAL2, the

Seal Calculus [24], the parent seal supervises all

its subdomains, and inter-domain communication

management was the main concern so far. Like-

wise, in the resource control model proposed here,

the parent seal is responsible for the resource al-

location with its subseals. This produces a nested

structure, where the parent seal is initially the sole

owner of its resources, and it may either share them

or dispatch fractions of them to its subseals. How-

ever, the sum of all resources within a protection

domain, e.g., in the Untrusted application of �gure

2, remains constant.

Our resource control model stems from further

design goals, such as portability and transparency:

the next subsections are dedicated to describing

these.

2.1 Portability and Transparency

Portability is crucial for the success of any mobile

agent platform. There are already some Java-based

systems o�ering resource control facilities, such as

Alta [23], GVM [4], Ka�eOS [1, 2], etc. However,

they rely on modi�ed Java runtime systems, which

are not portable. As a result, these systems are

not suited for large-scale applications that have to

support a wide variety of di�erent hardware plat-

forms and operating systems. Our goal is to provide

a general-purpose model which is not dependent

on speci�c implementation techniques, and to ex-

plore primarily completely portable solutions. This

entails that we have to cope with certain restric-

tions and with performance levels sometimes infe-

rior to those of existing realizations. Our portable

approach will nevertheless show its advantages in

the longer term: our solution will always perform

somewhat slower than the fastest JVMs without re-

source control mechanisms, but, on the other hand,

we will be able to exploit the latest techniques in

Java implementation optimizations, which will of-

ten not be possible with non-portable implementa-

tions.

A related important requirement of our resource

control model is that unmodi�ed o�-the-shelf ap-

plications must be able to execute on our platform.

In other words, resource control must be transpar-

ent to applications which do not explicitly manage

their pool of resources.

For portability reasons, it should also be stressed

that the goal of this work is not to implement any

kind of real-time guarantee. The resources that

are managed and distributed internally to the JVM

are thus entirely dependent upon what the JVM

process itself is given by the underlying operating

system.

2.2 Minimal Overhead for Trusted

Domains

Since J-SEAL2 is designed for large-scale applica-

tions, where a large number of services and agents

are executing concurrently, design and implemen-

tation must minimize the overhead of resource ac-

counting. Some domains, such as core services, are

fully trusted. Their resource consumption need not

be controlled by the kernel.

2.3 Support for Resource Sharing

In certain situations protection domains that are

neighbours in the hierarchy may choose to share

some resources. In this case, resource limits are en-

forced together for a set of protection domains. As

a result, resource fragmentation is minimized. For

example, consider an agent creating a subagent for

a certain task. Frequently, the creating agent does

not want to donate some resources to the subagent,

but it rather prefers to share its own resources with

the subagent. A property of our approach is that

if a domain has unlimited access to a resource, this

means that it is sharing it with RootSeal.

2.4 Managed Resources

Within each untrusted protection domain, the J-

SEAL2 kernel shall account for the following re-

sources:

� CPU RELATIVE de�nes the relative share of



2 OBJECTIVES AND RESULTING MODEL 5

share 8

share

RootSeal

sh
ar

e

Fully trusted domains
(no accounting needed)

Untrusted application8

share

split 50 MB

MEM

split 20 %

15 %

CPU

sp
lit

 75
 %

split 10 M
B

10 MB

40 MB

5 %

CPU

CPU

MEM

MEM

Figure 2: Illustration of the general resource control model.

CPU, and is expressed as a fraction of the par-

ent domain's own relative share1.

� MEM ACTIVE is the highest amount of

volatile memory that a protection domain is

allowed to use at any given moment.

� THREADS ACTIVE speci�es the maximal

number of active threads by protection do-

main at any moment. Uncontrolled creation

of threads has to be avoided, as it results in

increased load for the scheduler; it may even

crash the JVM, as there is currently no stan-

dard Java construct allowing one to inquire

about a JVM's maximum number of threads.

� THREADS TOTAL limits the number of

threads that may be created throughout the

lifetime of a protection domain, as thread cre-

ation is an expensive (kernel-level) operation.

1In our current implementation, this resource is con-

trolled by periodic sampling of the amount of executed byte-

code instructions. The precision of the measurement is im-

plementation dependent; there is indeed a bias induced by

the fact that the CPU resource is not allocated by absolute

values, but by relative shares, while in the implementation,

the reference value is the aggregated consumption measured

among untrusted domains and is not, as would be expected,

the resource taken as a whole.

� DOMAINS ACTIVE speci�es the maximal

number of active subdomains a protection do-

main is allowed to have at any given moment.

This limit is to minimize management over-

head inside the kernel by controlling the com-

plexity of the seal hierarchy at any time.

� DOMAINS TOTAL bounds the number of

subdomains that a protection domain may

generate throughout its lifetime, as domain

creation and termination are expensive kernel

operations.

Note that the kernel of J-SEAL2 is not responsi-

ble for network control. This is because the micro-

kernel does not provide access to the network. In-

stead, network access can be provided by multiple

services. These network services or some mediation

layers in the hierarchy are responsible for network

accounting according to application-speci�c secu-

rity policies. Let us stress that the network is not

a special case, since J-SEAL2, thanks to its ho-

mogenous model, may limit communication with

any services, like e.g. �le IO.

Another resource kind that could be expected in

the above list of kernel-managed resources is the

total amount of CPU allocated to a given protec-



3 API 6

tion domain throughout its lifetime. It is however

not clear what the unit of measurement should be

for this resource, while still preserving a completely

hardware-independent model. The main objective

of this kind of resource accounting would be to

prevent applications from inde�nitely cluttering up

platforms; in a heterogeneous set of servers it gives

however more sense to express total life time ab-

stractly as the wall clock time elapsed since the

application was started, than as the number of con-

sumed CPU cycles. Using as unit of measurement

the amount of executed Java byte-codes, although

portable, was also regarded as too low-level. Mea-

suring wall clock time can be achieved at the appli-

cation level, by establishment of a controller agent

with suÆcient rights to kill all misbehaving appli-

cations; this is a viable approach, since in J-SEAL2,

when a parent disposes of a child seal, all resources

are guaranteed to be freed properly. Accounting of

total CPU time was therefore discarded from the

kernel.

Finally, there is also no such resource as

MEM TOTAL, a limit to the accumulated amount

of memory used throughout the lifetime of a protec-

tion domain. It could be needed to prevent the kind

of denial-of-service attacks where a malicious agent

creates a lot of dynamic objects in order to keep

the CPU busy with garbage collection. Its imple-

mentation would however require maintenance of

an additional counter, which we preferred to avoid.

Instead, J-SEAL2 will take preventive action by

charging an abstract amount of CPU as a compen-

sation for the garbage collection induced by each

object created.

The six basic resource types retained for manage-

ment by the J-SEAL2 kernel are discussed in more

detail in the API section below.

3 API

Integrating resource control into the J-SEAL2 ker-

nel requires extensions to the kernel API. There

are 2 new kernel abstractions: A resource object

of type Res represents a resource of a certain type

available for a protection domain. Resource sets

of type ResSet ease the management of multiple

resources.

A domain may split its resources and donate

some parts to subdomains during their creation.

The unwrap method of the already existing ker-

nel class Seal creates a nested protection domain.

Thus, the Seal API has been extended to allow a

parent domain to restrict the resources of its chil-

dren.

3.1 De�nitions

In this section we provide some de�nitions, which

simplify the description of the resource control API.

In the following de�nitions let S denote an arbi-

trary domain in the hierarchy.

Root Res object: A root Res object of the do-

main S is a Res object responsible for resource

control in S. A root Res object is returned by

an invocation of the method getCurrentRes in

class Res (details about this method are cov-

ered by the next section).

Descendant Res object: A descendant Res ob-

ject D of the domain S is the result of splitting

a root Res object R of S. R is also called the

parent Res object of D. When a descendant

Res object is used in a ResSet object to create

a nested domain, it will be used for resource

control in the unwrapped child domain.

Note that these de�nitions are relative to the do-

main S. A descendant Res object D of the domain

S is a root Res object in a child C of S, if D was in

the ResSet object used for unwrapping C. When

we use the terms root and descendant Res objects

in the description of a method, we implicitly assume

Res objects of the domain invoking the method.

3.2 Class Res

For each type of resource, a protection domain has

an associated root Res object re
ecting how much

of the resource the domain has been granted. A

Res object de�nes a resource limit and provides in-

formation on the current resource usage in order

to support resource aware computations. It o�ers

an operation allowing a domain to split up some

part of the resource. This operation yields a new

descendant Res object that may be donated to chil-

dren domains. Table 1 summarizes the interface of

a Res object.



3 API 7

public final class Res {

public static final int

CPU_RELATIVE = 0,

MEM_ACTIVE = 1,

THREADS_ACTIVE = 2,

THREADS_TOTAL = 3,

DOMAINS_ACTIVE = 4,

DOMAINS_TOTAL = 5;

public static Res

getCurrentRes(int type);

public int getType();

public long getLimit();

public long getUsage();

public Res split(long limit);

public void setLimit(long limit);

public void combine();

public /*hidden*/ void finalize();

}

Table 1: The new Res API.

3.2.1 Resources, Limits, and Consumption

The static method getCurrentRes returns the

root Res object for a given type of resource of the

invoking domain. The constants CPU RELATIVE,

MEM ACTIVE, THREADS ACTIVE, THREADS TOTAL,

DOMAINS ACTIVE, and DOMAINS TOTAL (i.e., relative

CPU share, active memory in bytes, as well as

active and cumulative threads and subdomains)

are used to indicate the requested resource type.

IllegalArgumentException is thrown, if an

invalid resource identi�er is given as argument.

The information, for which type of resource a

Res object is responsible, is permanently associ-

ated with the Res object in order to prevent the

programmer from mixing up di�erent types of re-

sources by mistake. The getType method returns

the type of resource a Res object is representing.

getLimit returns the resource limit of a Res ob-

ject. A negative value means that there is no re-

source limit. Note that in general it is not pos-

sible for a domain to determine whether it shares

resources with other domains, except for the case

where the limit is negative, which implies that the

domain shares the resource with RootSeal.

Concerning the semantics of the resource limit,

the relative CPU share (CPU RELATIVE) is treated

di�erently from all other resource types. A rela-

tive CPU share of n means that domains created

with the corresponding Res object may use at most

a fraction of n

sum of all CPU limits in the system
of the

CPU time available to domains with a CPU limit

� 0.

getUsage returns the resource consumption of all

domains sharing the same root Res object. A nega-

tive value means that the J-SEAL2 kernel does not

account for the resource. In general, the following

implication holds for all Res objects: getUsage <

0! getLimit < 0. That is, a domain which has a

limit for a certain type of resource can always ask

about its current resource usage. The reverse impli-

cation may hold only for certain types of resources,

depending on the implementation (if there is no

limit for a certain resource, the J-SEAL2 kernel

need not account for that resource). If getUsage

is invoked on a Res object representing a relative

CPU share, UnsupportedOperationException is

thrown.

3.2.2 Splitting Resources

As the Res API does not expose any public con-

structor, the split operation has to be used in

order to create descendant Res objects that may

be donated to subdomains. split may be in-

voked only on root Res objects. It returns a new

descendant Res object responsible for the same

type of resource as the root Res object, which

becomes the parent of the descendant. There-

fore, all Res objects in a J-SEAL2 system form

a tree hierarchy. The descendant Res object has

the resource limit, which was passed to split as

argument, and an initial resource usage of zero.

The resource usage of the parent Res object is in-

cremented by the limit given to the descendant.

IllegalArgumentException is raised, if the limit

passed to split is negative or smaller than the min-

imal limit for the resource type the Res object is

responsible for. For each resource type, the min-

imal limit is de�ned by the system administrator

in a con�guration �le. IllegalStateException

is thrown, if split is invoked on a descen-

dant. ResourceOveruseException, a subtype of

RuntimeException, is raised, if the split opera-

tion would exceed the limit of the root Res object.

split allows a Res object without resource

limit to act as a theoretically unlimited genera-



3 API 8

tor of descendants. For practical reasons, we re-

quire that the sum of all limit assigned to descen-

dants does not exceed the maximum long value

Long.MAX VALUE. This restriction enables the cal-

culation of relative CPU shares using only integer

arithmetic.

3.2.3 Adjusting Resource Limits

The setLimit method provides a mechanism to

modify the resource limit of a Res object. The

new resource limit is passed as argument. The re-

source usage of the parent Res object is adjusted

accordingly. This operation enforces the following

constraints:

� setLimit may be invoked only on a Res

object with a limit � 0. Otherwise,

IllegalStateException is raised.

� A limit cannot be removed, i.e., the argu-

ment must be a non-negative value, which

is larger or equal to the minimal limit for

the corresponding resource type. Otherwise,

IllegalArgumentException is thrown.

� The new resource limit must not be smaller

than the current resource usage. Otherwise,

ResourceOveruseException is thrown.

� If invoked on a root Res object, the given

resource limit must not be larger than the

current limit of the object. Otherwise,

IllegalStateException is raised. This con-

straint ensures that a domain may only reduce

its own limit.

� If invoked on a descendant Res object, either

the new limit has to be smaller than the cur-

rent one, or the resource usage of the parent

object (which is a root Res object in the call-

ing domain) plus the di�erence between the

new limit and the current one must not exceed

the limit of the parent Res object. Otherwise,

ResourceOveruseException is thrown. This

rule allows a parent domain to increase or re-

duce the resource limits of its children, but not

exceeding its own limit.

A parent domain may use descendant Res objects

in order to monitor the resource usage of children

domains. With the aid of setLimit, the parent is

able to adjust the resource limits for the children

domains.

3.2.4 Combining Resources

The combine operation allows to merge Res objects

that have been split before. If it is invoked on a root

Res object, combine has no e�ect. If it is called on

a descendant Res object, the descendant is com-

bined with its parent Res object, i.e., the resource

usage of the parent object (if it is accounted for)

is reduced by the limit of the descendant. The de-

scendant Res object is marked as invalid and cannot

be used anymore. Combination is only possible, if

the descendant Res object is not used by any sub-

domain (i.e., all subdomain created with the de-

scendant Res object must be terminated before).

Otherwise, IllegalStateException is thrown.

The Res API also provides a �nalizer to be in-

voked by the garbage collector, when a Res object

becomes eligible for garbage collection. If the Res

object to be reclaimed has not been combined with

its parent before, the �nalizer does the combina-

tion in order to avoid resource leakage. Note that

the constraint of the combine operation is satis�ed,

because when the �nalizer is called, the Res ob-

ject is not in use anymore. The finalize method

is marked as hidden in order to prevent user code

from invoking the �nalizer. J-SEAL2 uses extended

byte-code veri�cation in order to ensure that hid-

den class members are not accessed, even though

they may be declared as public. For details regard-

ing extended byte-code veri�cation in J-SEAL2, see

[6].

3.3 Class ResSet

A ResSet object o�ers a convenient way to manage

all resources given to a domain. It holds exactly

one Res object for each type of resource. Table 2

summarizes the public interface of a ResSet object:

The static method getCurrentResSet returns a

ResSet object with the root Res objects of the

domain the calling thread is executing in. This

ResSet object may be used to access the individual

Res objects of the domain. The copy method cre-

ates a shallow copy of a ResSet object. The copy

contains the same references to Res objects as the

original ResSet object. The getCurrentResSet

and copy methods are the only mechanisms allow-



3 API 9

public final class ResSet {

public static ResSet

getCurrentResSet();

public ResSet copy();

public Res getRes(int type);

public void setRes(Res r);

public void combine();

}

Table 2: The new ResSet API.

ing to allocate new ResSet objects. There is no

public constructor, because the API enforces the

constraint that a ResSet always holds exactly 1

Res object for each type of resource.

The getRes method return the Res object for

a given type of resource. The argument is a re-

source constant de�ned in the class Res. getRes

throws an IllegalArgumentException, if the ar-

gument does not represent a valid resource type.

The setRes method replaces the Res object in

the set, which has the same resource type as the

Res object given as argument. setRes throws

NullPointerException, if the argument is null.

The combine method o�ers a convenient way to

invoke combine on all Res objects in the set. It

raises IllegalStateException, if a combine op-

eration on a Res objects throws an exception. In

this case, some Res objects in the set may have

been combined.

3.4 Class Seal

The Seal abstraction provides methods for domain

creation (unwrapping) and removal (wrapping or

disposing). Table 3 summarizes the wrap and

unwrap methods of the Seal class. Other methods

(e.g., domain disposal) are not shown, because they

are not a�ected by the resource control extension.

The wrapmethod takes the name of the child do-

main to remove as argument and returns a wrapped

representation of the child. If the child is not a

leaf node in the hierarchy, all of its subdomains are

wrapped recursively as well. However, in this case

all information about the resource distribution in

the wrapped hierarchy is lost. The wrap operation

may throw an InvalidName exception, if there is

no domain with the given name, or a WrapFailed

exception in case of a serialization failure (the do-

main is terminated nonetheless).

The unwrap method with 3 arguments requires

a wrapped representation of the subdomain to

resurrect, its name, as well as a ResSet object

with the resources for the new subdomain. If

the wrapped representation is not a leaf node,

all domains in the wrapped hierarchy are resur-

rected and share2 the resources passed as argu-

ments to unwrap. The unwrap operation with 2

arguments implicitly shares the resources of the un-

wrapping domain with the created child domain.

unwrap throws an InvalidName exception, if there

is already a subdomain with the given name, an

UnwrapFailed exception in case of a deserialization

failure, or IllegalStateException, if there is an

invalid Res object in the ResSet object passed as

argument3.

When a domain is created, the parent's

DOMAINS ACTIVE and DOMAINS TOTAL Res objects

are charged for the created subdomain(s), while the

child's resource objects are charged for the CPU

time consumed for unwrapping (involving class-

loading and linking), for memory allocation, as well

as for the child's initializer thread.

3.5 Example

The code fragment in table 4 demonstrates the use

of the resource control API of the J-SEAL2 kernel.

In this example a protection domain (e.g., a sand-

box domain controlling the execution of incoming

mobile agents) creates 5 subdomain, childA, childB,

childC, childD, and childE. We assume that the cre-

ating domain has an assigned CPU share > 0.

While childA shares all resources with its par-

ent, the other subdomains receive only limited re-

sources. ChildB gets 10% of its parent's CPU share

and 1 MB active memory. ChildB shares the lim-

its for threads and subdomains with its parent.

ChildC, childD, and childE share 20% of the par-

ent's CPU share, 10 MB active memory, a limit of

10 active subdomains, and a total limit of 12 sub-

2This limitation does not have much practical signi�-

cance, because wrapping of deep hierarchies is rarely used.

When a domain is wrapped with its children, all a�ected do-

mains are usually closely related sharing all resources. Fur-

thermore, it is always possible to provide hierarchical wrap-

ping protocols at the user-level, which preserve information

about resource distribution.
3This can only happen, if an already combined descen-

dant Res object is in the ResSet object.



4 IMPLEMENTATION 10

public class Seal implements Runnable, Serializable {

public static WrappedSeal wrap(SealName n) throws InvalidName, WrapFailed;

public static void unwrap(WrappedSeal w, SealName n, ResSet r)

throws InvalidName, UnwrapFailed;

public static void unwrap(WrappedSeal w, SealName n)

throws InvalidName, UnwrapFailed

{

unwrap(w, n, ResSet.getCurrentResSet());

}

...

}

Table 3: The wrap and unwrap methods.

domain creations. While childC and childD share

their thread limits with the parent, childE (and its

subdomains) must not create more than 15 threads.

When the subdomains are terminated, the parent

combines resources as soon as possible.

4 Implementation

In this section we present the techniques we are

using for the implementation of the resource con-

trol model discussed in the previous sections. Since

accounting for logical resources, such as active

and cumulative threads and subdomains, requires

only simple modi�cations to a few J-SEAL2 ker-

nel primitives, we focus on accounting for physical

resources, such as memory and CPU consumption.

4.1 No Direct Sharing

Since its initial release the J-SEAL2 kernel is de-

signed to ease the integration of resource control

facilities. It guarantees accountability, i.e., user-

visible objects belong to exactly one protection do-

main. References to an object exist only within

a single domain4, i.e., in J-SEAL2 there is no di-

rect sharing of object references between distinct

domains. Therefore, it is possible to account each

allocated object to exactly one protection domain.

This feature not only simpli�es resource account-

ing, but it is also crucial for immediate resource

reclamation during domain termination.

4The only exception to this rule are Res objects (see sec-

tion 3.2) used for resource sharing.

4.2 Byte-code Rewriting

In our approach we employ byte-code rewriting

techniques both for memory and CPU accounting.

This is because it is to our understanding the only

entirely portable way to implement the needed ac-

counting mechanisms. It is unrealistic to expect

the source code of every application to be available

for modi�cation. Moreover, if we want guarantees

against denial-of-service attacks, we cannot rely on

foreign code to perform any voluntary self-limiting

operations, whereas if we modify its byte-code be-

fore it starts executing, we can `oblige' it to provide

any information needed by the kernel and to obey

any restriction imposed on it by the environment.

Instead of rewriting byte-code for CPU control, the

J-SEAL2 kernel might e.g. ask the underlying op-

erating system for information about the CPU con-

sumption of each thread, but this is possible only

when Java threads are directly mapped into op-

erating system threads. Another approach would

be to run a modi�ed JVM; the arguments against

this are however exposed elsewhere in this paper.

A further discussion of existing (and non-portable)

approaches is to be found in section 6.1.

In the present report, the byte-code of a Java

class is modi�ed before it is loaded by the JVM

[16]. Code for memory accounting is inserted be-

fore each memory allocation instruction (for de-

tails, see section 4.9). CPU accounting uses an ab-

stract measure, the number of executed byte-code

instructions. Therefore, code for CPU accounting

is inserted in every basic block of code (details are

presented in section 4.10).

Rewriting for memory accounting must be done



4 IMPLEMENTATION 11

long MB = 1024*1024;

Seal.unwrap(childA, nameOfChildA);

ResSet rP = ResSet.getCurrentResSet();

Res cpu = rP.getRes(Res.CPU_RELATIVE);

long cpuLimit = cpu.getLimit();

Res mem = rP.getRes(Res.MEM_ACTIVE);

ResSet rB = rP.copy();

rB.setRes(cpu.split(cpuLimit/10));

rB.setRes(mem.split(1*MB));

Seal.unwrap(childB, nameOfChildB, rB);

ResSet rCD = rP.copy();

rCD.setRes(cpu.split(cpuLimit/5));

rCD.setRes(mem.split(10*MB));

rCD.setRes(rP.getRes(

Res.DOMAINS_ACTIVE).split(10));

rCD.setRes(rP.getRes(

Res.DOMAINS_TOTAL).split(12));

Seal.unwrap(childC, nameOfChildC, rCD);

Seal.unwrap(childD, nameOfChildD, rCD);

ResSet rE = rCD.copy();

Res splitThreads =

rE.getRes(Res.THREADS_TOTAL).split(15);

rE.setRes(splitThreads);

Seal.unwrap(childE, nameOfChildE, rE);

Seal.dispose(nameOfChildE);

splitThreads.combine();

Seal.dispose(nameOfChildB);

rB.combine();

Seal.dispose(nameOfChildC);

Seal.dispose(nameOfChildD);

rCD.combine();

Seal.dispose(nameOfChildA);

Table 4: Resource control example.

before rewriting for CPU accounting, because

memory accounting inserts additional byte-code in-

structions to enforce memory limits, while account-

ing CPU consumption does not involve any object

allocation.

4.3 Domain Types

The resource control model supports trusted do-

mains that have unlimited access to certain types of

resources. For performance reasons, the J-SEAL2

kernel does not account for the consumption of

these resources. Regarding CPU and memory ac-

counting, we distinguish 4 types of domains:

NO-ACC: Domains without memory limit and

without CPU control may execute unmodi�ed

Java code, as they do not need to execute any

accounting instructions.

CPU-ACC: Domains without memory limit, but

with CPU control have to execute CPU ac-

counting instructions. However, code for mem-

ory accounting is not required in such domains.

MEM-ACC: Domains with a memory limit, but

without CPU control have to execute mem-

ory accounting instructions. However, code for

CPU accounting is not required in such do-

mains.

CPU-MEM-ACC: Domains with a memory

limit and with CPU control have to execute

accounting code for memory allocation as well

as for CPU consumption.

4.4 Accounting Objects

In MEM-ACC and in CPU-MEM-ACC domains

objects of the class MemAccount represent mem-

ory limit and current usage. In CPU-ACC and

in CPU-MEM-ACC domains objects of the class

CPUAccount maintain CPU consumption. These

objects are used only by the J-SEAL2 kernel,

they are not accessible by user code. Each

thread has associated the MemAccount object and

a CPUAccount object of the domain it is exe-

cuting in; null values indicate that a domain

does not need a MemAccount or CPUAccount ob-

ject. Java thread-local variables (instances of

java.lang.ThreadLocal) are used to implement



4 IMPLEMENTATION 12

this association. The MemAccount and CPUAccount

classes o�er a static method getCurrentAccount,

which returns the corresponding accounting object

of the domain the calling thread is executing in.

Because access to MemAccount and above all to

CPUAccount objects may be extremely frequent, ac-

cessing these objects from thread-local variables

in every method would cause a signi�cant perfor-

mance penalty5. Therefore, non-native methods

are rewritten in order to pass the necessary ac-

counting objects as additional arguments. Native

methods are excluded from rewriting, because we

cannot account for memory allocated and CPU

time consumed by native code. We are relying

on modern inter-modular register allocation algo-

rithms implemented by state-of-the-art JVMs to

minimize the overhead of passing the accounting

objects through the whole method call-graph.

As an example for the rewriting process, con-

sider method a given in table 5. The rewritten6

void a(int x)

{

b(null, x);

}

Table 5: Method a before rewriting.

version of method a for a CPU-MEM-ACC domain

is given in table 6. Here we are only presenting the

additional arguments, while the inserted account-

ing code is discussed in sections 4.9 and 4.10. In

void a(int x,

MemAccount mem, CPUAccount cpu)

{

b(null, x, mem, cpu);

}

Table 6: Method a rewritten for a CPU-MEM-ACC

domain.

this example, method a receives two additional ar-

guments for the CPUAccount and MemAccount ob-

5In Sun's JDK 1.3 implementation thread-local variables

are managed as hash-maps, i.e., each access to a thread-local

variable requires a hash-map lookup.
6For the sake of easy readability, we present rewriting

transformations at the Java level, even though the imple-

mentation works at the JVM byte-code level.

jects7. The additional arguments are passed to all

invoked methods/constructors (in this example to

method b).

4.5 Callbacks from Native Code

Native code invoking Java methods complicates the

resource control implementation, because the na-

tive code is not aware of the accounting objects to

be passed to Java methods as extra arguments. The

following three scenarios of Java method invocation

by native code are particularly important:

� Thread creation: The Java runtime system

(native code) invokes the run method of a

thread object when a thread is started with

the aid of the start method.

� Static initializers: Static initializers are in-

voked directly during class-loading, i.e., they

are invoked by native code.

� Re
ection: The invoke method of the

class java.lang.reflect.Method and

the newInstance method of the class

java.lang.reflect.Constructor are native

methods.

When the thread invoking a Java method from

native code has already set its tread-local account-

ing objects, it is suÆcient to provide for each

method an additional one with the same signa-

ture, which takes the required accounting objects

from thread-local variables and passes them to the

rewritten method. In the rewriting example given

in tables 5 and 6 we have to supplement the rewrit-

ten method with method a in table 7. Note that

when a constructor is rewritten according to this

scheme, the invocation of another constructor of

the same class or of a constructor of the superclass

has to antecede the lookup of the accounting ob-

jects.

However, when a new thread starts executing the

run method, the thread-local accounting objects

have not been initialized yet. As protection do-

mains in J-SEAL2 do not have direct access to the

class java.lang.Thread but have to employ a safe

wrapper class instead [6], the wrapper initializes

7Note that in a CPU-ACC or MEM-ACC domain only

one additional argument would be necessary to hold the ac-

counting object.



4 IMPLEMENTATION 13

void a(int x)

{

MemAccount mem =

MemAccount.getCurrentAccount();

CPUAccount cpu =

CPUAccount.getCurrentAccount();

a(x, mem, cpu);

}

Table 7: Solving callbacks from native code.

the thread-local accounting variables with the ac-

counting objects of the protection domain the new

thread belongs to. These objects are passed to the

constructor of the wrapper by the J-SEAL2 kernel.

When a new protection domain is created, the

J-SEAL2 kernel allocates a new initializer thread

with the accounting objects for the new domain.

While starting this thread, the thread wrapper ini-

tializes the thread-local accounting variables and

starts to load the classes of the new protection do-

main. The class-loading already happens in the

accounting context of the new domain.

4.6 Shared Classes

The J-SEAL2 kernel distinguishes between shared

and replicated classes [6]. Shared classes are loaded

by the system class-loader (they exist only once

in the JVM), while replicated classes, such as the

classes of a mobile agent, are loaded by the class-

loader of a protection domain (they are reloaded

in each domain). All JDK classes as well as most

classes from the J-SEAL2 kernel are shared. Cer-

tain J-SEAL2 library classes that are frequently

used may be shared as well, in order to avoid the

overhead of reloading them multiple times.

ln JDK 1.2 it is not possible to load a JDK class

with a class-loader di�erent from the system class-

loader. Depending on the JVM implementation,

certain core JDK classes (e.g., java.lang.Object,

java.lang.String, java.lang.Throwable, etc.)

are assumed to exist only once in the system. Repli-

cating such classes crashes the JVM. Furthermore,

the class-loader API of JDK 1.2 speci�es that all

classes in the java package or in a subpackage

thereof can only be de�ned by the bootstap class-

loader. As a consequence, we have the following

constraints for accounting for resources used in the

JDK:

� All JDK classes are loaded by the system class-

loader; there is only a single version of each

JDK class.

� Since the same JDK class may be used in

di�erent types of domains (NO-ACC, CPU-

ACC, MEM-ACC, or CPU-MEM-ACC), JDK

classes have to include the accounting code for

all domain types.

� The rewriting of JDK classes must be o�-line

(e.g., during the installation of the J-SEAL2

platform), because JDK classes are always

loaded by the system class-loader, which we

cannot modify.

The example in table 8 shows how method a

given in table 5 would be rewritten, if it was de�ned

in a shared class. A method with the same signa-

ture as the original method dispatches to the ap-

propriate implementation, when it is invoked from

native code. For each type of domain, there is a dif-

ferent method implementation. In this example we

distinguished the signature of the NO-ACC imple-

mentation from the dispatcher method by adding a

dummy argument of type NoAccount. The compil-

ers of state-of-the-art JVMs may be able to remove

this useless argument.

Alternatively, it is possible to rename the NO-

ACC implementation. This approach complicates

rewriting, since a table of renamed methods of

shared classes has to be maintained, but it has

the advantage that replicated classes of trusted

domains (e.g., classes of an authenticated, fully

trusted agent) can be rewritten very eÆciently,

because only method signatures in the constant-

pool [16] are a�ected, whereas the method code

remains unchanged (in contrast, passing the extra

NoAccount argument requires additional byte-code

instructions).

4.7 Optimizations

Rewriting shared classes as discussed in the pre-

vious section increases the code size by more than

factor 4. Because the increased code size a�ects the

memory requirements and the startup overhead of

the J-SEAL2 kernel (more methods may be com-

piled), the following optimizations are being imple-

mented:



4 IMPLEMENTATION 14

void a(int x)

{

MemAccount mem =

MemAccount.getCurrentAccount();

CPUAccount cpu =

CPUAccount.getCurrentAccount();

if (cpu == null)

if (mem == null) a(x, null);

else a(x, mem);

else

if (mem == null) a(x, cpu);

else a(x, mem, cpu);

}

void a(int x, NoAccount dummy)

{

b(null, x, null);

}

void a(int x, CPUAccount cpu)

{

b(null, x, cpu);

}

void a(int x, MemAccount mem)

{

b(null, x, mem);

}

void a(int x, MemAccount mem,

CPUAccount cpu)

{

b(null, x, mem, cpu);

}

Table 8: Rewriting methods in shared classes.

� A leaf method, which does not allocate any

objects, requires neither MEM-ACC nor CPU-

MEM-ACC implementations (i.e., the NO-

ACC implementation can be used in MEM-

ACC domains, and CPU-MEM-ACC domains

can employ the CPU-ACC implementation).

� As a generalization of this optimization, we

do not need to provide MEM-ACC and

CPU-MEM-ACC implementations for meth-

ods without any memory allocation instruc-

tions, if they invoke only methods satisfying

the same condition.

� We can optimize the code of shared kernel

classes by hand in order to minimize the over-

head for resource control (e.g., when allocating

a set of objects, we can account for the total

size of these objects at once).

4.8 Rewriting Abstract Methods

There are 2 di�erent approaches for dealing with

abstract Java methods (including interface meth-

ods) in shared types (classes or interfaces):

1. Abstract methods are not rewritten. This ap-

proach simpli�es the rewriting process, but in-

voking a method on a variable of a (static)

type, in which the called method is declared

as abstract (e.g., interface method call), in-

curs high overhead, because the dispatching

method has to access the accounting objects

from thread-local variables.

2. Abstract methods are rewritten. For each ab-

stract method in a shared class, the type signa-

tures of the 4 possible implementations (NO-

ACC, CPU-ACC, MEM-ACC, CPU-MEM-

ACC) are added. As a result, a class imple-

menting the abstract method has to provide all

4 implementations, even if the implementing

class is a replicated one (in this case, 3 imple-

mentations may be dummies). This approach

allows to pass the accounting objects directly

to the invoked method, no matter whether it

is an interface method or not.

The J-SEAL2 implementation follows the second

approach, because method calls on interface types

are very frequent in Java programs. Thus, we can

avoid the invocation of the dispatcher method.



4 IMPLEMENTATION 15

4.9 Memory Control

Enforcing memory limits requires exact pre-

accounting for memory resources, i.e., an overuse

exception is raised before a thread can exceed the

memory limit of the domain it is executing in. In

contrast to JRes [9], which maintains a separate

memory limit for each thread, J-SEAL2 enforces a

single memory limit for a multithreaded domain or

even for a set of domains in the case of resource

sharing.

4.9.1 Class MemAccount

Because a single MemAccount object has to main-

tain the memory consumption and limit of a set

of domains sharing the same memory resources,

access to the MemAccount must be synchronized.

Furthermore, accounting for an object as well as

its allocation and initialization has to be an atomic

action.

Before the object is allocated, J-SEAL2 ensures

that the memory limit is not exceeded and updates

the MemAccount. If the memory allocation fails

(i.e., throwing a java.lang.OutOfMemoryError),

if the constructor raises an exception, or if the al-

locating thread is terminated asynchronously (e.g.,

termination of the protection domain the thread is

executing in), we have to ensure that the modi�-

cation of the MemAccount is undone. Otherwise,

other threads or even other domains (using the

same MemAccount) could su�er from memory leak-

age.

The J-SEAL2 kernel o�ers a special kernel mode

of execution, which prevents a thread from being

terminated asynchronously (details about the ker-

nel mode can be found in [6]). However, since en-

tering and leaving kernel mode are rather expensive

operations and because memory allocation occurs

frequently in object-oriented programs, J-SEAL2

employs a sophisticated rewriting scheme for mem-

ory allocation instructions in order to avoid enter-

ing kernel mode.

When the garbage collector reclaims some ob-

jects, the MemAccount that has been charged for

these objects must be updated. For this reason, the

MemAccount maintains a weak reference for each

allocated object, which does not prevent the ob-

ject from being reclaimed. When an object refer-

enced by a weak reference is garbage collected, the

weak reference is enqueued in a reference queue,

which can be polled by the MemAccount implemen-

tation. J-SEAL2 uses AccountRef, a subclass of

java.lang.ref.WeakReference, in order to store

information about the size of an object. The simple

implementation of AccountRef is depicted in table

9.

Table 10 shows some parts of the MemAccount im-

plementation8. The MemAccount maintains mem-

ory limit and usage, as well as a reference queue

and a reference set. The reference set is used in

order to maintain strong references to the weak

reference objects. It is a highly optimized set

implementation, which handles an asynchronous

java.lang.ThreadDeath exception gracefully (i.e.,

the set always remains in a consistent state).

The checkLimit method ensures that a memory

allocation does not exceed the MemAccount limit. If

there are not enough memory resources available,

checkLimit polls the reference queue in order to

check for reclaimed objects9. If the reference queue

returns weak references that are also in the refer-

ence set, the memory usage of the MemAccount ob-

ject is reduced (discussing the rewriting algorithm

for memory allocation sites, we will see that in case

of an exception a weak reference may be allocated,

but not inserted into the set). If there are still not

enough free memory resources after polling the ref-

erence queue, checkLimit forces the garbage col-

lector to run. In case the garbage collector is not

able to reclaim enough objects belonging to the

MemAccount object, a ResourceOveruseException

is raised.

Since polling the reference queue and running

the garbage collector are kernel-level operations

(they a�ect the internal state of the JVM), they

are executed in kernel mode. In line 12 the

Kernel.lockCond operation enters kernel mode,

unless the calling thread is already executing in

kernel mode. Details about the conditional ker-

nel lock primitive are discussed in [6]. In line

30 the Kernel.unlock operation returns back to

user mode (if checkLimit has been invoked in user

8For instance, we omitted the static getCurrentAccount

method mentioned in section 4.4.
9In order to prevent the reference queue and the reference

set from becoming too large, the checkLimit method should

poll the queue periodically, even though the memory limit

is not exceeded. To simplify matters, we omitted this detail

in the given code fragment.



4 IMPLEMENTATION 16

public final class AccountRef extends WeakReference {

public final int size;

AccountRef(Object referent, ReferenceQueue q, int size)

{

super(referent, q); this.size = size;

}

}

Table 9: The AccountRef implementation.

1 public final class MemAccount {

2 public long limit;

3 public long usage = 0;

4 public final ReferenceQueue refQueue = new ReferenceQueue();

5 public final ReferenceSet refSet = new ReferenceSet();

6

7 public MemAccount(long limit) { this.limit = limit; }

8

9 public void checkLimit(int size)

10 {

11 if (usage + size > limit) { // not enough resources

12 boolean locked = Kernel.lockCond();

13 try {

14 AccountRef ref;

15 while ((ref = (AccountRef)refQueue.poll()) != null) {

16 if (refSet.remove(ref)) // check whether ref was in the set

17 usage -= ref.size;

18 }

19 while (usage + size > limit) { // still not enough resources

20 System.gc(); // force the gc to run

21 long oldUsage = usage;

22 while ((ref = (AccountRef)refQueue.poll()) != null) {

23 if (refSet.remove(ref)) // check whether ref was in the set

24 usage -= ref.size;

25 }

26 if (usage == oldUsage) // gc was not successful

27 throw new ResourceOveruseException();

28 }

29 } finally {

30 if (locked) Kernel.unlock();

31 }

32 }

33 }

34 ...

35 }

Table 10: The MemAccount implementation.



4 IMPLEMENTATION 17

mode).

4.9.2 Rewriting Algorithm

Table 11 demonstrates how a memory allocation

site is rewritten. This rewriting scheme is based on

the following assumptions:

� An asynchronous java.lang.ThreadDeath

exception is thrown at most once in each

thread. This property is guaranteed by the

J-SEAL2 kernel.

� An operation requiring exclusive kernel mode

[6] must not synchronize on an accounting ob-

ject. Otherwise, a deadlock could arise (before

checkLimit is called, a lock on the account-

ing object is obtained; during the execution of

checkLimit, non-exclusive kernel mode may

be entered).

� The state of a ReferenceSet object remains

consistent, even if an operation is stopped

asynchronously.

We are using a boolean 
ag undo in order to in-

dicate whether a modi�cation to the MemAccount

object must be undone. In lines 7{15, the mem-

ory limit is enforced and the MemAccount object

is updated. Updating the MemAccount object and

setting the undo 
ag is implemented as an atomic

action: both operations are idempotent, thus we

simply repeat these operations in case of an asyn-

chronous exception. In line 15 the lock on the

MemAccount object is released, because in line 16

object initialization is user code and might block

arbitrarily. In line 17 a weak reference to the al-

located object is created. If an exception occurs

in lines 16{17, the weak reference is not inserted

in the reference set, and the exception handlers in

lines 25{46 are responsible to undo the modi�ca-

tion of the MemAccount object. In lines 18{24 the

weak reference is inserted into the reference set and

the undo 
ag is cleared as an atomic action.

Although the transformation of memory alloca-

tion sites shown in table 11 increases the code size

signi�cantly, most parts of the code are rarely ex-

ecuted. In the common case no exception occurs,

thus the exception handlers, representing the big-

ger part of the code, are not activated. Moreover,

in the common case, when the memory limit is not

exceeded, the checkLimitmethod returns immedi-

ately without obtaining any kernel locks. In order

to reduce the code size, exception handlers may be

reused, if multiple memory allocation instructions

occur in the same method.

4.9.3 Object Size

The size of an object is calculated from the num-

ber of �elds for each Java basic type, the number of

�elds holding object references, a constant for the

object overhead, as well as a constant for the ac-

counting overhead (i.e., the size of an AccountRef

object, as well as the space used in the reference

queue and in the reference set). For arrays, the ac-

tual size must be computed from the array dimen-

sions available on the execution stack. Depending

on the Java runtime system, the overhead for array

objects may be larger than for non-array objects,

because of the size information stored within ar-

rays.

Constants for the object overhead and for the size

of Java basic types and object references are man-

aged in a con�guration �le by the system admin-

istrator. Since in general the administrator does

not know the object representation of the underly-

ing Java runtime system, a tool helps to approx-

imate these constants (e.g., by avoiding garbage

collection and measuring the di�erence of allocated

memory before and after creating certain types of

objects). However, object alignment is not taken

into account.

4.9.4 Optimizations

While our approach works for objects as well as

for arrays, we are also implementing an optimiza-

tion for non-array objects: Similar to JRes [9], in

each allocated object we store a reference to the

corresponding MemAccount object. Rewritten �nal-

izers are responsible for updating the MemAccount

when an object is reclaimed by the garbage collec-

tor. Thus, we can avoid the signi�cant overhead of

maintaining weak references, which is particularly

important for small objects.

For arrays, we cannot see any portable alterna-

tive. However, in practice the overhead for account-

ing for allocated arrays is not a serious problem, be-

cause arrays frequently are large objects (compared

to the accounting overhead they cause).



4 IMPLEMENTATION 18

1 MemAccount mem; // the accounting object passed as a method argument

2 Object o; // the object to allocate

3 int size; // the object size including overhead of deallocation information

4 boolean undo = false; // undo update in case of an exception

5 try { // only ThreadDeath possible (at most once!)

6 try { // any exception possible (object allocation and initialization)

7 synchronized (mem) {

8 mem.checkLimit(size); // might throw ResourceOveruseException

9 long newUsage = mem.usage + size;

10 try { // only ThreadDeath possible (at most once!)

11 mem.usage = newUsage; undo = true; // idempotent operations

12 } catch (Throwable t) { // no exception possible

13 mem.usage = newUsage; undo = true; throw t;

14 }

15 } // unlock the MemAccount, because object initialization is user code

16 o = new ...; // allocation and initialization (user code!)

17 AccountRef ref = new AccountRef(o, mem.refQueue, size);

18 synchronized (mem) {

19 try { // only ThreadDeath possible (at most once!)

20 mem.refSet.add(ref); undo = false; // idempotent operations

21 } catch (Throwable t) { // no exception possible

22 mem.refSet.add(ref); undo = false; throw t;

23 }

24 }

25 } catch (Throwable t) { // only ThreadDeath possible

26 if (undo) {

27 synchronized (mem) {

28 long oldUsage = mem.usage - size;

29 try { // only ThreadDeath possible (at most once!)

30 mem.usage = oldUsage; undo = false; // idempotent operations

31 } catch (Throwable t2) { // no exception possible

32 mem.usage = oldUsage; undo = false; throw t2;

33 }

34 }

35 }

36 throw t;

37 }

38 } catch (Throwable t) { // only ThreadDeath possible, but in this case the

39 // previous handler already undid the update

40 if (undo) { // if undo == true, no more exception possible

41 synchronized (mem) {

42 mem.usage -= size;

43 }

44 }

45 throw t;

46 }

Table 11: Rewriting a memory allocation site.



4 IMPLEMENTATION 19

4.10 CPU Control

For CPU control, we are accounting the number

of executed byte-code instructions for each thread

running in a CPU-ACC or CPU-MEM-ACC do-

main. A high-priority scheduler thread, which is

part of the J-SEAL2 kernel, executes periodically

in order to ensure that assigned CPU limits are re-

spected. The scheduler thread calculates the num-

ber of executed byte-code instructions for each set

of domains sharing a CPU limit by summing up the

CPU consumption of all threads executing in a do-

main in the set. The scheduler compares the num-

ber of executed byte-codes with the desired sched-

ule. If a set of domains has exceeded its CPU limit,

the priorities of threads executing in these domains

are lowered.

4.10.1 Class CPUAccount

In contrast to a MemAccount object, which is

shared by all threads executing in a domain with

memory accounting, each thread running in a do-

main with CPU accounting has associated its own

CPUAccount object. Since CPU accounting oc-

curs very frequently, it is important that multiple

threads do not have to synchronize on a common

accounting object. As only the scheduler thread

makes any scheduling decisions, it is suÆcient to

account for each thread separately. The scheduler

is responsible for accumulating the accounting data

of all threads executing in a set of domains sharing

a CPU limit.

A CPUAccount object simply maintains an inte-

ger counter, which is updated by the thread own-

ing the object. Table 12 shows some parts of the

CPUAccount implementation10. Because the sched-

public final class CPUAccount {

public volatile int usage;

...

}

Table 12: The CPUAccount implementation.

uler thread has to read the counter value, we are

using a volatile variable in order to force the JVM

to immediately propagate every update from the

10For instance, we omitted the static getCurrentAccount

method mentioned in section 4.4.

working memory of a thread to the master copy in

the main memory [14, 16].

In general, updating the counter requires load-

ing the usage �eld of the CPUAccount object from

memory (it is volatile), incrementing the loaded

value accordingly, and storing the new value in the

memory. A counter update requires about 6 byte-

code instructions.

4.10.2 Scheduler

In this section we describe how the scheduler thread

computes the CPU consumption of a set of do-

mains, and how it employs di�erent JVM prior-

ity levels in order to prevent CPU overuse. How-

ever, we do not present a particular scheduling al-

gorithm, because we are still experimenting with

di�erent policies.

For each CPUAccount object, the scheduler

thread always stores the value of the counter it has

read most recently. The scheduler calculates the

di�erence between the current value and the previ-

ously stored value in order to determine the amount

of byte-code instructions executed during the last

time-slice (because of the lack of synchronization,

the scheduler must not reset any CPUAccount ob-

ject). If a thread has not existed before, the sched-

uler assumes the previously stored value to be zero.

When a thread terminates, its CPUAccount object

is not disposed of immediately, but it is maintained

until the scheduler has examined it.

The scheduler has to deal with an over
ow in the

counter of a CPUAccount object. The size of the

counter must be large enough so that its full range

cannot be used in a single time-slice. For current

JVMs and a reasonably small time-slice, a Java int

is suÆcient. However, in future high-performance

systems, CPUAccount objects may have to maintain

long values11.

We are using di�erent JVM priority levels to con-

trol the CPU consumption of individual domains.

As protection domains in J-SEAL2 do not have di-

rect access to the class java.lang.Thread (they

have to use a safe wrapper class instead [6], which

does not o�er any mechanism to change the prior-

ity of a thread), an user-level thread cannot raise

its own priority.

11For a long variable, the volatile declaration is crucial,

because the JVM does not treat non-volatile long values

atomically [16].



4 IMPLEMENTATION 20

Even though the Java language speci�cation [14]

does not de�ne any scheduling policy, current JVM

implementations respect assigned thread priori-

ties. Many JVMs employ �xed priority schedul-

ing, where a low-priority thread cannot execute, if

there is a high-priority thread ready to run. The

J-SEAL2 kernel uses the distinct JVM thread pri-

ority levels as follows:

� MAX PRIORITY: The maximum priority is

reserved to JVM internal tasks, such as han-

dling weak references. J-SEAL2 does not run

any threads with the maximum priority.

� MAX PRIORITY-1: J-SEAL2 uses this pri-

ority level for kernel-level operations in or-

der to prevent priority inversion, i.e., when a

high-priority thread is waiting for an exclusive

kernel lock (see [6]) because of a low-priority

thread T executing in kernel mode, the prior-

ity of T is temporarily boosted until thread T

releases the kernel lock.

� MAX PRIORITY-2: This priority level is used

by the J-SEAL2 scheduler thread.

� NORM PRIORITY{MIN PRIORITY12: The

scheduler assigns these priority levels to

threads according to the CPU consumption

of the corresponding domain and the assigned

CPU share. Threads executing in NO-ACC

or in MEM-ACC domains are always assigned

NORM PRIORITY. If a domain exceeds its

CPU limit, the priorities of its threads are

reduced (or at least the priorities of those

threads overusing the CPU). If a domain does

not consume its assigned CPU resources, the

priorities of its threads may be increased again

(but never exceeding NORM PRIORITY). We

are experimenting with di�erent scheduling al-

gorithms regarding the history of CPU con-

sumption.

4.10.3 Rewriting Algorithm

In the description of the rewriting algorithm we

use the following de�nition of an accounting block,

which is related to the concept of a basic block of

12In this description we assume that NORM PRIORITY

< MAX PRIORITY-2.

code. In order to minimize the accounting over-

head, we are considering blocks of maximal length.

An accounting block is a byte-code sequence ful�ll-

ing the following constraints:

� If a byte-code instruction, which is neither

a method/constructor invocation nor a JVM

subroutine invocation, changes the control-


ow non-sequentially (e.g., method return, ex-

ception raising, branch, JVM subroutine re-

turn, etc.), it must be the last instruction in

the accounting block. That is, with the ex-

ception of method/constructor and JVM sub-

routine invocations, only the last byte-code in-

struction in the block may change the control-


ow non-sequentially. A method invocation

does not terminate an accounting block, be-

cause otherwise the average block size would

be reduced signi�cantly, as method invocations

are very frequent in object-oriented programs.

� Only branches to the begin of the block are

allowed. There is no byte-code instruction

branching to another instruction in the same

method, which is not the �rst one in its block.

Furthermore, the �rst instruction of an excep-

tion handler must be always the �rst instruc-

tion in its block.

The byte-code rewriting algorithm involves the

following 4 steps (an eÆcient implementation may

perform multiple steps together):

1. Method/constructor invocations are rewritten

in order to pass the CPUAccount object as

extra argument. Because the CPUAccount

is always the last argument13, it can be

pushed onto the stack immediately before the

method/constructor invocation instruction.

2. An accounting block analysis (similar to a ba-

sic block analysis in traditional compilers) par-

titions the method code into a set of account-

ing blocks. Each block has an attribute indi-

cating the accounting size of the block. Ini-

tially, this attribute holds the number of byte-

13Since rewriting for memory accounting is done before

rewriting for CPU control, the MemAccount argument is

passed always before the CPUAccount object.



4 IMPLEMENTATION 21

code instructions in the block14. Further-

more, a control-
ow graph with the accounting

blocks as nodes has to be constructed, if opti-

mizations are to be performed in order to min-

imize the accounting overhead. Without any

optimizations, accounting instructions have to

be inserted into every block.

3. Optimizations, such as those presented in fol-

lowing section, analyze the control-
ow graph

in order to detect situations where acount-

ing for multiple di�erent blocks may be com-

bined. The optimizations may decrement the

accounting size attribute of one block and add

it to the accounting size of another block. If

the accounting size of a block becomes zero, it

does not require any accounting instructions.

4. For every block with a positive accounting size,

accounting instructions are inserted at the be-

gin of the block. The only exception to this

rule is the �rst block in a constructor: The

invocation of another constructor of the same

class or of the superclass has to antecede the

accounting code. The included instructions

add the accounting size of the block plus the

number of inserted accounting instructions to

the CPUAccount object. For performance rea-

sons, updates of the CPUAccount object are not

synchronized.

This approach ensures that a thread is charged

for at least the number of byte-code instructions

it executes. For each accounting block, a thread

is charged for the number of instructions in the

block, before it executes these instructions (pre-

accounting). When an instruction, which is not

the last one in its accounting block, raises an ex-

ception, the thread has been charged for more in-

structions than it has consumed. However, since

the number of executed byte-code instructions is

only an approximation of the exact CPU consump-

tion, and because exception handling is expensive

on many JVM implementations, this possible inex-

actness does not pose any problem.

14In order to improve the accuracy of measurement, the

J-SEAL2 administrator may con�gure a weighting of byte-

code instructions (integer values) according to their com-

plexity. To simplify matters, we assume that all byte-code

instructions have a weighting of 1.

4.10.4 Optimizations

In order to minimize the accounting overhead,

the rewriting algorithm may perform certain op-

timizations. If classes are rewritten o�-line, such

as shared JDK classes (see section 4.6), the op-

timization algorithm may perform some complex

and time-consuming analysis. However, for repli-

cated classes, only simple optimizations are possi-

ble, since these classes are rewritten on-line. In the

following paragraphs we present some simple rules

that are well suited for on-line optimization.

In the following optimization O1 we assume that

the accounting block B has n (n > 0) predecessors

Ai (1 � i � n) in the control-
ow graph. We de-

note the accounting size attributes of B and Ai as

b and ai.

O1 If all Ai are di�erent from B, and for each Ai

the only successor is B, then all ai are incre-

mented by b and b is set to zero.

For the following optimizations O2 and O3 we

assume that the accounting block A has n (n > 0)

successors Bi (1 � i � n) in the control-
ow graph.

We denote the accounting size attributes of A and

Bi as a and bi, the minimum accounting size min bi
as bmin, and the maximum accounting size max bi
as bmax.

O2 If all Bi are di�erent from A, and for each

Bi the only predecessor is A, then a is incre-

mented by bmin and all bi are decremented by

bmin. Consequently, the value of at least one

bi becomes zero.

O3 If all Bi are di�erent from A, and for each Bi

the only predecessor is A, and the di�erence

bmax� bmin does not exceed a given threshold

T , then a is incremented by bmax and all bi are

set to zero. Less formally: If the values of the

accounting size attributes of successor blocks

are not too much di�erent, the common pre-

decessor block accounts for the longest succes-

sor block. This optimization is an aggressive

version of rule O2. The threshold controls the

aggressiveness of this optimization. A thresh-

old T means that a thread executing a block

Bi may be charged for up to T byte-code in-

structions, which it did not execute. In gen-

eral, T should not be smaller than the num-



4 IMPLEMENTATION 22

ber of byte-code instructions necessary to up-

date the CPUAccount object (a thread would

be charged for the update instructions, if the

optimization was not applied). In order to �nd

e�ective values for the threshold, we can per-

form static analysis of typical Java programs

(the smallest value T allowing to avoid a sig-

ni�cant fraction of the accounting code).

The optimization rules O1, O2, and O3 aim at

combining the accounting for a set of blocks that

represent conditional statements, but they do not

allow to remove the accounting code from loops.

For instance, rules O1 and O2 (or alternatively, O1

and O3) may be applied to optimize the accounting

for if-else statements. However, these rules are

not suÆcient to reduce the accounting overhead for

if statements without a matching else. Therefore,

we are working on further optimizations.

In general, multiple optimization rules can be

applied to a given control-
ow graph. The order

of application is important, since it may a�ect the

quality of the accounting code. Most importantly,

the optimization algorithm must ensure termina-

tion. In particular, certain loops allow an in�nite

application of rule O1. The following heuristics

help to guide the optimization process:

� An optimization rule may be applied only if

the application increases the number of blocks

with an accounting size attribute of zero. Since

the number of blocks in a method is �nite,

obeying this rule ensures termination of the

optimization algorithm.

� Optimization O1 shall be applied before opti-

mizations O2 and O3.

� Optimization O3 shall be applied before opti-

mization O2. There is no need to apply opti-

mization O2, if optimization O3 (which is more

aggressive) succeeds on a certain node in the

control-
ow graph.

� If there are leaf nodes in the control-
ow

graph, they should be considered �rst, after-

wards their predecessor nodes, etc.

While optimizations O1, O2, and O3 aim at re-

moving accounting code from certain blocks, the

following rule O4 helps to reduce the overhead of

accounting by caching the counter maintained by

the CPUAccount in a local variable. This optimiza-

tion improves performance only for certain JVM

implementations (measurements are given in sec-

tion 5). Optimization O4 must be considered after

application of the rules O1, O2, and O3.

O4 In general, a block with a positive account-

ing size requires accounting instructions to

load, update, and store the usage �eld of the

CPUAccount object (see section 4.10.1). We

introduce a local variable localUsage caching

the value of the usage �eld in order to avoid

reloading this �eld in every accounting block.

The following algorithm marks exactly those

accounting block that have to reload the usage

�eld of the CPUAccount object. All other

blocks may directly update the localUsage

variable and propagate the new value to the

usage �eld of the CPUAccount object.

� Initially, we mark the �rst block in the

method, in each JVM subroutine, and in

each exception handler.

� If a block contains a method/constructor

invocation, all of its successors in the

control-
ow graph are marked.

� If a block with an accounting size at-

tribute of zero is marked, all of its suc-

cessors have to be marked as well.

The algorithm terminates, if no further blocks

can be marked.

4.11 Accounting for Garbage Collec-

tion

In order to prevent denial-of-service attacks by

causing the garbage collector to consume a consid-

erable amount of CPU time (e.g., an attacker may

create a lot of garbage without exceeding its mem-

ory limit), the J-SEAL2 kernel has to account for

the time spent by the garbage collector. Only CPU-

MEM-ACC domains can be charged for the garbage

they produce, because accounting for garbage col-

lections requires the information, which domain has

allocated a certain object (such information is not

available in NO-ACC or CPU-ACC domains), and



4 IMPLEMENTATION 23

because the time spent by the garbage collector af-

fects the CPU consumption of a domain (CPU con-

sumption is not measured in NO-ACC or MEM-

ACC domains).

Since the exact CPU time spent by the garbage

collector is not known, we are using an abstract

measure. The J-SEAL2 administrator de�nes a

rough approximation of the number of byte-code

instructions required to reclaim an object.

A simple solution is to charge the CPUAccount

object of a thread, before it allocates an object.

That is, a domain has to `pay' for the garbage it

eventually will produce at the time it `buys' an

object. This approach has the advantage that a

CPU-MEM-ACC domain is charged for all garbage

it produces, even if the domain has already termi-

nated when some objects are reclaimed.

In a more complicated approach the CPUAccount

object of a thread is charged during execution of

the checkLimit method of the class MemAccount,

whenever a weak reference is obtained from the ref-

erence queue (table 10, lines 15 and 22). The signa-

ture of the checkLimitmethod has to be extended

to take an additional CPUAccount argument. Fur-

thermore, the CPUAccount object may be charged

additionally for each time a garbage collection is

initiated explicitly (table 10, line 20).

However, the second solution has the drawback

that domains are not charged for the garbage they

leave in the system after termination (e.g., a ma-

licious mobile agent may allocate as many objects

as its memory limit allows and migrate to another

site before it is charged for the garbage). In ad-

dition to this, the second approach is diÆcult to

implement, when �nalizers, which are invoked by

unknown garbage collector threads, are rewritten

to perform accounting tasks as discussed at the end

of section 4.9. For these reasons, the J-SEAL2 ker-

nel implements the �rst solution.

4.12 Compensating for Native Code

With the aid of byte-code rewriting techniques,

it is not possible to account for memory alloca-

tion and CPU consumption in native code. Un-

trusted applications are not allowed to bring na-

tive code libraries into the system. Concerning

JVM-provided standard operations, the J-SEAL2

kernel tries to compensate for resources used by

native code and prevents untrusted domains from

using certain functionality leading to a signi�cant

resource consumption by native code. In the fol-

lowing we describe some important cases of re-

source consumption in native code and how J-

SEAL2 solves them:

� Class-loading: The Java runtime system man-

ages an internal table of loaded classes. Mem-

ory for compiled methods is allocated by the

Just-in-Time compiler, which is usually imple-

mented in native code. However, the set of

classes untrusted domains (e.g., mobile agents)

are allowed to access is limited and known to

the J-SEAL2 kernel. Therefore, the kernel ac-

counts for the classes using an approximation,

which is proportional to the size of the class

�les.

� Deserialization: J-SEAL2 uses Java serializa-

tion in order to create messages to be trans-

ferred across domain boundaries. When the

receiving domain opens a message, it is being

deserialized using the class-loader of the receiv-

ing domain to resolve class names. The class

java.io.ObjectInputStream employs native

methods to allocate objects without invoking

their constructors. J-SEAL2 solves this hurdle

by storing the amount of objects for each type,

which is part of the serialized object graph, in

the message. The receiver performs resource

checks before deserializing the message. Note

that we are not directly storing the size of the

message, because the message may be deseri-

alized on a di�erent host using a JVM with

a distinct object representation (e.g., consider

a mobile agent carrying a message to another

location).

� Object cloning: Java supports a way to create

a shallow copy of an object of a type imple-

menting the interface java.lang.Cloneable.

The shallow copy is allocated by a native

method. A simple solution is to forbid un-

trusted domains to use object cloning. An-

other somewhat more complicated approach is

to rewrite invocations of the clonemethod ac-

cordingly.

� Re
ection: The Java re
ection API provides

a mechanism to indirectly create a new in-

stance of a class. The newInstancemethod of



5 EVALUATION 24

the class java.lang.reflect.Constructor is

native. J-SEAL2 prevents untrusted domains

from using the re
ection API. However, note

that object allocated by a constructor invoked

with the aid of the newInstancemethod would

be accounted for (see section 4.5).

5 Evaluation

Because the implementation of our resource con-

trol model in J-SEAL2 is work in progress, we are

currently not able to provide performance and scal-

ability evaluations of real applications running in a

J-SEAL2 environment with resource control. Nev-

ertheless, in this section we present some perfor-

mance measurements proo�ng that the overhead

due to accounting is acceptable on modern JVM

implementations.

While in J-SEAL2 the overhead for memory con-

trol is comparable to the overhead caused by JRes15

[9], the overhead of CPU control based on byte-code

rewriting techniques has to be examined carefully,

because such an approach has not been used before.

JRes [9] uses native code for CPU accounting,

although the authors mention that CPU account-

ing could be accomplished with the aid of byte-

code rewriting techniques. The authors argued that

the resulting execution time would be prohibitive

when a reasonable degree of accuracy was to be

achieved. However, our initial performance mea-

surements show that the overhead due to our com-

pletely portable implementation of CPU account-

ing is not prohibitive on modern JVM implemen-

tations16. We measured the following well-known

benchmark programs:

Fib: This is the recursive algorithm for the calcula-

tion of �bonacci numbers. We used this bench-

mark to calculate the 35th �bonacci number.

Sort: This is bubble-sort, an iterative sorting algo-

rithm for arrays. It consists of 2 nested loops,

where the inner loop exchanges 2 adjacent ar-

ray elements, if they are not in the desired or-

der. We used this benchmark to sort an array

15For an application allocating a new object every 250

byte-code instructions, the overhead for memory control is

less than 18%, if no memory limit is exceeded.
16We are not measuring the overhead for CPU control

incurred by the scheduler, as it can always be kept small by

choosing an appropriate time-slice.

of 10000 int values in ascending order. Ini-

tially, the input array was sorted in descending

order.

Table 13 summarizes our measurements, which

were collected on a Windows NT 4.0 workstation

(Intel Pentium II, 400MHz clock rate) with 5 dif-

ferent JVM implementations. In order to minimize

the impact of compilation and garbage collection,

all results represent the median of 5 di�erent mea-

surements. For each measurement, table 13 shows

the execution time of the benchmark in millisec-

onds, as well as the speedup of the original code

compared to the rewritten version. We measured

code rewritten without any optimizations, as well

as the code resulting from the application of the

optimizations rules presented in section 4.10.4.

The �bonacci benchmark consists of 5 accounting

blocks. Optimization O3 with a minimum thresh-

old Tmin = 11 allows to combine accounting for

the whole method in the �rst block, i.e., this opti-

mization avoids 80% of the accounting code. Be-

cause the optimized �bonacci method accounts for

all instructions in the �rst block of the method,

optimization rule O4 cannot reduce the accounting

overhead anymore.

Our measurements for the recursive �bonacci

method show that our optimizations allow to re-

duce the accounting overhead to 12{19% on mod-

ern JVM implementations, such as Sun's Hotspot

VMs and IBM's Classic VM. These results also in-

dicate that the overhead of passing the additional

CPUAccount argument is reasonably small.

The bubble-sort method comprises 10 accounting

blocks. A combination of the optimization rules O1

and O3 with a minimum threshold Tmin = 6 allows

to remove the accounting code from 5 blocks, i.e.,

these optimizations avoid 50% of the accounting

code. Furthermore, the optimization O4 can be

applied to all accounting blocks but the �rst one in

the method.

The bubble-sort benchmark shows that optimiza-

tion rule O4 is bene�cial only on some JVM imple-

mentations, such as Sun's and IBM's Classic VMs,

whereas on Sun's Hotspot VMs this rule has a bad

impact on the performance. While the performance

on IBM's Classic VM su�ers signi�cantly from the

volatile CPUAccount counter (removing the volatile

declaration reduces the accounting overhead drasti-

cally), the performance impact of the volatile vari-



6 RELATED WORK 25

Sun JDK 1.3 Sun JDK 1.2.2 IBM JDK 1.3

Classic Hotspot Classic Hotspot Classic

(Interpreter) Client (JIT) Server 2.0 (JIT)

Fib original 13029 (1,00) 1542 (1,00) 1031 (1,00) 1032 (1,00) 991 (1,00)

rewritten 22933 (1,76) 2123 (1,38) 1773 (1,72) 1502 (1,46) 1522 (1,54)

O3 16825 (1,29) 1732 (1,12) 1432 (1,39) 1232 (1,19) 1131 (1,14)

Sort original 16954 (1,00) 1812 (1,00) 1212 (1,00) 1352 (1,00) 782 (1,00)

rewritten 44344 (2,62) 2774 (1,53) 2434 (2,01) 2564 (1,90) 2323 (2,97)

O1+O3 35351 (2,09) 2423 (1,34) 1752 (1,45) 2143 (1,59) 1623 (2,08)

O1+O3+O4 34650 (2,04) 2633 (1,45) 1513 (1,25) 2294 (1,70) 1543 (1,97)

Table 13: Benchmarks measuring the overhead for CPU accounting.

able is rather small on Sun's Hotspot VMs. Never-

theless, for our benchmark programs, IBM's JVM

implementation o�ers the best overall performance

in absolute terms.

6 Related Work

We distinguish two broad categories of related work

on adding resource control to Java: those which

have security as main objective, and those which

follow other motivations.

6.1 Resource Control for Security

Purposes

Compared to existing proposals for realizing re-

source control in Java, we broadly di�erentiate our

approach in two ways: �rst, whether the model sup-

ports a process-based approach, with well-de�ned

domain boundaries and resource allocation for each

application, and, second, to which extent the im-

plementation is portable or not.

JRes [9] is a resource control system which takes

CPU, memory, and network resource consumption

into account. The resource management model of

JRes works at the level of individual Java threads;

in other words, there is no notion of application

as a group of threads, and the implementation of

resource control policies is therefore cumbersome.

JRes is a pure resource accounting system and does

not enforce any separation of domains; covering this

other aspect is the goal of J-Kernel [25], a comple-

mentary project of the same research team. For

its implementation, JRes does not need any modi-

�cation to the JVM, but relies on a combination of

byte-code rewriting and native code libraries. To

perform CPU accounting, the approach of JRes is

to make calls to the underlying operating system,

which requires native code to be accessed17. For

memory accounting, it essentially uses byte-code

rewriting, but still needs the support of a native

method to account for memory occupied by array

objects. Finally, to achieve accounting of network

bandwidth, the authors of JRes also resort to native

code, since they swapped the standard java.net

package with their own version of it.

Ka�eOS [1] is a Java runtime system which sup-

ports the operating system abstraction of process to

isolate applications from each other, as if they were

run on their own JVM. Thanks to Ka�eOS, a modi-

�ed version of the freely available Ka�e virtual ma-

chine [26], it is possible to achieve resource control

with a higher precision than what is possible with

byte-code rewriting techniques, where e.g. memory

accounting is limited to controlling the respective

amounts consumed in the common heap, and where

CPU control does not account for time spent by the

common garbage collector working for the respec-

tive applications. The Ka�eOS approach should

by design result in better performance, but is how-

ever inherently non-portable. This means that op-

timizations found in compilers and standard JVMs

are not bene�ted from: in a recent publication [2]

the authors report that, in absence of denial-of-

service attack, IBM's compiler and JVM [18] is 2{5

times faster than theirs.

Developed by the same team as Ka�eOS, Alta

[23] is a prototype based on the Fluke hierarchical

process model, and implemented on the Ka�e vir-

tual machine. The main di�erences with Ka�eOS

17More precisely, CPU accounting in JRes is based on na-

tive threads, a feature not supported by every JVM.



7 CURRENT STATUS AND CONCLUSION 26

are that a single garbage collector is responsible

for all applications, and that Alta entirely respects

the hierarchical process model of Fluke by provid-

ing resource control APIs, whereas Ka�eOS only

retains a more implicit nested CPU and memory

management scheme.

Many other systems are proposed in the litera-

ture, but none of them are as complete as JRes,

Alta, and Ka�eOS. An excellent recent overview is

provided in [3]. To summarize, we might say that J-

SEAL2 proposes a protection model inspired both

from Alta and J-Kernel, and a memory accounting

implementation that is more reminiscent of JRes.

For all other aspects, J-SEAL2 however clearly con-

stitutes an independent e�ort.

6.2 Other Java-centric Approaches

to Resource Control

There are several lines of research, where environ-

ments and analysis tools have been designed that

can be exploited more or less with the same objec-

tives as exposed in this article.

The Real-Time for Java Experts Group [7] has

published a proposal to add real-time extensions to

Java. One important focus of this work is to ensure

predictable garbage collection characteristics in or-

der to meet real-time guarantees. For instance, the

speci�cation provides for several memory manage-

ment schemes, such as areas with limited lifetime

or bounded allocation rates, which could be imple-

mented { or at least simulated { with the J-SEAL2

extensions described in the present article. An-

other real-time system, PERC [17], extends Java to

support real-time performance guarantees. To this

end, the PERC system analyzes Java byte-codes

to determine memory requirements and maximal

execution times, and feeds that information to a

real-time scheduler. The objective of real-time sys-

tems is to provide precise guarantees e.g. for worst-

time execution; our focus, on the other hand, is on

computing approximated resource consumptions in

order to prevent denial-of-service attacks. We are

more interested in the relative values of applica-

tions, and less in absolute �gures. This is con�rmed

by the fact that we are not trying to estimate their

real CPU consumption, but rather to compare the

respective number of executed byte-codes.

Pro�lers constitute another class of tools that

have many things in common with resource con-

trol: both intend to gather information about re-

source usage. Pro�lers however are designed to help

developers optimize the eÆciency of their applica-

tions, and not to externally control their resource

consumption. The Java Virtual Machine Pro�ling

Interface (JVMPI) [21] is an API created by Sun;

it is a set of hooks to the JVM which signals in-

teresting events like thread start and object allo-

cations. Java Usage Monitor (JUM) [10] is a tool

which builds upon JVMPI to help the developer

determining how much CPU is consumed by the

di�erent threads of an application and how much

memory they use. JUM needs native code to obtain

information from the underlying operating system

about how CPU time is allocated, and is therefore

not portable. Interestingly, JUM is able to also

account for objects allocated by native code. How-

ever, JUM is not able to enforce memory limits.

While J-SEAL2 allows for exact pre-accounting of

memory resources, where an overuse exception is

generated before a thread exceeds its memory limit,

a resource control mechanism based on JUM can

only react after a memory overuse is detected. In

addition to these limitations, JVMPI is an experi-

mental interface, it is not yet a standard pro�ling

interface.

Finally, we mention some approaches that rely on

economics-based theories, using virtual currencies

to achieve natural load-balancing of concurrent ap-

plications, as well as recycling of unused resources

in open distributed environments, with the antici-

pated side-e�ect of preventing denial-of-service at-

tacks [22]. Our focus is however more on how to im-

plement the basic resource accounting mechanisms

on a speci�c platform, Java, than on the design of

high-level { and distributed { resource allocation

policies. Nevertheless, whereas the spirit of this re-

port is rather conservative, it does not exclude the

application of the presently described techniques

to the implementation of open computational mar-

kets.

7 Current Status and Conclu-

sion

The techniques described in this report have been

tested by rewriting Java sources by hand; the actual

byte-code rewriting tool is not �nished yet. The



REFERENCES 27

CPU accounting scheme, with its many optimiza-

tion tricks, could bene�t from a formal proof that

no denial-of-service will get unnoticed, and that a

client will not be charged for much more than it ac-

tually consumed. Also on our immediate todo-list

is the development of high-level programming tools

in order to support a friendlier event noti�cation

mechanism than the overuse exceptions generated

by the J-SEAL2 kernel. User-speci�ed thresholds

should enable applications to receive warnings in a

timely manner before the actual overuse happens.

Whereas other approaches focus on high per-

formance, or demonstrate a long-term, deep re-

design of the Java runtime system, our proposal

might be grossly characterized as a language-based

patch. Our resource control system does indeed

not provide the same level of accuracy of measure-

ments and execution speed. On the other hand,

J-SEAL2 perfectly ful�lls its job of isolating appli-

cations from each other, and particularly of pre-

venting denial-of-service attacks originating from

inside the execution platform. Moreover, the com-

plete compatibility and portability of our approach

makes it immediately usable for the bene�t of large-

scale distributed agent systems, especially when

mobile code is involved.

Acknowledgements

The authors would like to thank Julien Francioli,

Rudolf Freund, Andreas Krall, Patrik Mihailescu,

and Klaus Rapf for their valuable support.

References

[1] G. Back and W. Hsieh. Drawing the red line

in Java. In Seventh IEEE Workshop on Hot

Topics in Operating Systems, Rio Rico, AZ,

Mar. 1999.

[2] G. Back, W. Hsieh, and J. Lepreau. Pro-

cesses in Ka�eOS: Isolation, resource manage-

ment, and sharing in Java. In Proceedings of

the Fourth Symposium on Operating Systems

Design and Implementation (OSDI'2000), San

Diego, CA, USA, Oct. 2000.

[3] G. Back, P. Tullmann, L. Stoller, W. Hsieh,

and J. Lepreau. Techniques for the design of

Java operating systems. In Proceedings of the

2000 USENIX Annual Technical Conference,

San Diego, CA, USA, June 2000.

[4] G. Back, P. Tullmann, L. Stoller, W. C. Hsieh,

and J. Lepreau. Java operating systems: De-

sign and implementation. Technical Report

UUCS-98-015, University of Utah, Depart-

ment of Computer Science, Aug. 6, 1998.

[5] W. Binder. J-SEAL2 { A secure high-

performance mobile agent system. In IAT'99

Workshop on Agents in Electronic Commerce,

Hong Kong, Dec. 1999.

[6] W. Binder. Design and implementation

of the J-SEAL2 mobile agent kernel. In

Sixth ECOOP Workshop on Mobile Object

Systems: Operating System Support, Secu-

rity and Programming Languages, Cannes,

France, June 2000. http://cui.unige.ch/

~ecoopws/ws00/papers/js.ps.

[7] G. Bollella, B. Brosgol, P. Dibble, S. Furr,

J. Gosling, D. Hardin, and M. Turnbull. The

Real-Time Speci�cation for Java. Addison-

Wesley, Reading, MA, USA, 2000.

[8] C. Bryce and J. Vitek. The JavaSeal mo-

bile agent kernel. In First International Sym-

posium on Agent Systems and Applications

(ASA'99)/Third International Symposium on

Mobile Agents (MA'99), Palm Springs, CA,

USA, Oct. 1999.



REFERENCES 28

[9] G. Czajkowski and T. von Eicken. JRes: A

resource accounting interface for Java. In Pro-

ceedings of the 13th Conference on Object-

Oriented Programming, Systems, Languages,

and Applications (OOPSLA-98), volume 33,

10 of ACM SIGPLAN Notices, pages 21{35,

New York, Oct. 18{22 1998. ACM Press.

[10] F.-X. Le Louarn. JUM, a Java Usage Monitor.

Web pages at http://www.iro.umontreal.

ca/~lelouarn/jum.html.

[11] B. Ford, M. Hibler, J. Lepreau, R. McGrath,

and P. Tullmann. Interface and execution

models in the 
uke kernel. In Proceedings

of the Third Symposium on Operating Sys-

tems Design and Implementation (OSDI-99),

pages 101{116, Berkeley, CA, Feb. 22{25 1999.

Usenix Association.

[12] B. Ford and S. Susarla. CPU Inheritance

Scheduling. In Usenix Association Second

Symposium on Operating Systems Design and

Implementation (OSDI), pages 91{105, 1996.

[13] M. Godfrey, T. Mayr, P. Seshadri, and T. von

Eicken. Secure and portable database ex-

tensibility. In Proceedings of the ACM SIG-

MOD International Conference on Manage-

ment of Data (SIGMOD-98), volume 27,2 of

ACM SIGMOD Record, pages 390{401, New

York, June 1{4 1998. ACM Press.

[14] J. Gosling, B. Joy, and G. L. Steele. The Java

Language Speci�cation. The Java Series. Ad-

dison-Wesley, Reading, MA, USA, 1996.

[15] J. Hulaas, L. Gannoune, J. Francioli,

S. Chachkov, F. Sch�utz, and J. Harms. Elec-

tronic commerce of internet domain names us-

ing mobile agents. In Proceedings of the Second

International Conference on Telecommunica-

tions and Electronic Commerce (ICTEC'99),

Nashville, TN, USA, Oct. 1999.

[16] T. Lindholm and F. Yellin. The Java Virtual

Machine Speci�cation. Addison-Wesley, Read-

ing, MA, USA, second edition, 1999.

[17] K. Nilsen. Java for real-time. Real-Time Sys-

tems Journal, 11(2), 1996.

[18] T. Suganuma, T. Ogasawara, M. Takeuchi,

T. Yasue, M. Kawahito, K. Ishizaki, H. Ko-

matsu, and T. Nakatani. Overview of the

IBM Java Just-in-Time compiler. IBM Sys-

tems Journal, 39(1):175{193, 2000.

[19] Sun Microsystems, Inc. Enterprise JavaBeans

Technology. Web pages at http://java.sun.

com/products/ejb/.

[20] Sun Microsystems, Inc. Java Servlet Technol-

ogy. Web pages at http://java.sun.com/

products/servlet/.

[21] Sun Microsystems, Inc. Java Virtual Ma-

chine Pro�ler Interface (JVMPI). Web

pages at http://java.sun.com/j2se/1.3/

docs/guide/jvmpi/index.html.

[22] C. F. Tschudin. Open resource allocation

for mobile code. In Proceedings of The First

Workshop on Mobile Agents, Berlin, Apr.

1997.

[23] P. Tullmann and J. Lepreau. Nested Java pro-

cesses: OS structure for mobile code. In Eighth

ACM SIGOPS European Workshop, Sintra,

Portugal, Sept. 1998.

[24] J. Vitek and G. Castagna. Seal: A framework

for secure mobile computations. In Internet

Programming Languages, 1999.

[25] T. Von Eicken, C.-C. Chang, G. Czajkowski,

and C. Hawblitzel. J-Kernel: A capability-

based operating system for Java. Lecture Notes

in Computer Science, 1603:369{394, 1999.

[26] T. Wilkinson. Ka�e - a Java virtual machine.

Web pages at http://www.transvirtual.

com.


