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ABSTRACT
Preventing abusive resource consumption is indispensable
for all kinds of systems that execute untrusted mobile code,
such as mobile object systems, extensible web servers, and
web browsers. To implement the required defense mecha-
nisms, some support for resource control must be available:
accounting and limiting the usage of physical resources like
CPU and memory, and of logical resources like threads. Java
is the predominant implementation language for the kind of
systems envisaged here, even though resource control is a
missing feature on standard Java platforms. This paper de-
scribes the model and implementation mechanisms underly-
ing the new resource-aware version of the J-SEAL2 mobile
object kernel. Our fundamental objective is to achieve com-
plete portability, and our approach is therefore based on
Java bytecode transformations. Whereas resource control
may be targeted towards the provision of quality of service
or of usage-based billing, the focus of this paper is on secu-
rity, and more specifically on prevention of denial-of-service
attacks originating from hostile or poorly implemented mo-
bile code.

Keywords
Bytecode rewriting, Java, micro-kernels, mobile object sys-
tems, resource control, security

1. INTRODUCTION
Java [17] was designed as a general-purpose programming
language, with special emphasis on portability in order to
enhance the support of distributed applications. There-
fore, it is natural that access to low-level, highly machine-
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dependent mechanisms were not incorporated from the be-
ginning. New classes of applications are however being con-
ceived, which rely on the facilities offered by Java, and which
at the same time push and uncover the limits of the lan-
guage. These novel applications, based on the possibilities
introduced by code mobility, open up traditional environ-
ments, move arbitrarily from machine to machine, execute
concurrently, and compete for resources on devices where
a very wide range of configurations can be found. We are
therefore witnessing increased requirements regarding fair-
ness and security, and it becomes indispensable to acquire
a better understanding and grasp of low-level issues such as
resource management.

Operating system kernels provide mechanisms to enforce re-
source limits for processes. The scheduler assigns processes
to CPUs reflecting process priorities. Furthermore, only the
kernel has access to all memory resources. Processes have
to allocate memory regions from the kernel, which verifies
that memory limits for the processes are not exceeded. Like-
wise, a mobile object kernel must prevent denial-of-service
attacks, such as mobile objects allocating all available mem-
ory. For this purpose, accounting of physical resources (i.e.,
memory, CPU, network bandwidth, etc.) and of logical re-
sources (i.e., number of threads, number of protection do-
mains, etc.) is crucial.

Whereas J-SEAL2 [5, 6] is primarily designed for mobile
objects, the approach described here is in many ways appli-
cable to other distributed programming paradigms practiced
in Java, since the mobile object paradigm is very compre-
hensive in terms of involved issues and technologies. The
techniques employed in J-SEAL2 could thus greatly improve
stability and security in the execution of Java Applets, or
traditional distributed applications, where strong protec-
tion domains and resource control mechanisms are often
needed. Further potential use cases include technologies
such as World-Wide-Web server extensions (Java Servlets
[27]) and Java application servers (e.g., Enterprise JavaBeans
containers [25]).

The great value of resource control is that it is not restricted
to serve as a base for implementing security mechanisms.
Application service providers may e.g. need to guarantee a
certain quality of service, or to create the support for usage-



based billing, in order to amortize investments in hardware
and software set at customers’ disposal. The basic kernel
extensions described here will be necessary to schedule the
quality of service or to support the higher-level accounting
system, which will bill the clients for consumed computing
resources. This paper is however restricted to the kernel
extensions that were necessary to add resource control to
J-SEAL2; faithful to the micro-kernel approach, J-SEAL2
relegates to the higher levels the mechanisms which do not
absolutely have to be part of the kernel.

This paper is organized as follows: The next section gives a
brief overview of the J-SEAL2 mobile object kernel. Section
3 presents the design goals and the resulting resource con-
trol model, and section 4 the corresponding APIs. Section
5 explains our implementation techniques, for which section
6 presents some performance measurements. Section 7 com-
pares our approach with related work, whereas section 8
concludes the paper.

2. THE J-SEAL2 MOBILE OBJECT KER-
NEL

This section gives some basic background on the J-SEAL2
mobile object kernel [5, 6], which we selected as the target
platform to integrate our resource control model. For de-
tails regarding J-SEAL2, see the web pages at http://www.
jseal2.com/.

J-SEAL2 is a micro-kernel implemented in pure Java, which
supports the hierarchical process model of the Seal Calcu-
lus [33] that was first implemented by the JavaSeal mobile
object system [9]. The J-SEAL2 kernel manages a tree hi-
erarchy of nested protection domains1, which may be either
mobile objects or service components. Each mobile object
and service executes in a protection domain of its own, called
a sealed object or seal for short.

In J-SEAL2 mobile objects and service components are com-
pletely separated from each other. Untrusted mobile objects
are not allowed to directly use certain functionality of the
JDK, such as file or network IO, but they have to access
dedicated J-SEAL2 services that are executing in separate
protection domains. The inter-domain communication facil-
ities of the kernel prevent direct sharing of object references
between distinct domains. Details on the communication
model of J-SEAL2 can be found in [5].

Figure 1 depicts a typical hierarchy of protection domains,
including several service components, stationary sandbox
domains that enforce appropriate security policies on their
subdomains, as well as mobile objects. The root domain,
RootSeal, is responsible for creating the service components
as well as the stationary domains. The network service al-
lows mobile objects to migrate to another site. In figure 1
one sandbox executes authenticated, fully trusted mobile ob-
jects, while the other one is responsible for anonymous, po-
tentially malicious mobile objects. The sandbox of trusted

1In this paper the term ‘protection domain’ refers to the
concept of a process or task in an operating system, and not
to the JDK class java.security.ProtectionDomain.

mobile objects is granted access to all installed services,
whereas the sandbox of anonymous mobile objects may only
use the network service in a restricted way.

In J-SEAL2 each protection domain has associated its own
set of threads, which cannot cross domain boundaries ar-
bitrarily. Mobile objects are not allowed to directly create
Java threads, but they have to use a safe wrapper class in-
stead. The J-SEAL2 kernel enforces additional constraints
on mobile objects, in order to ensure that a parent domain
may terminate its children at any time, forcing the children
to release all allocated resources immediately. For instance,
mobile objects are not allowed to catch ThreadDeath excep-
tions, which are used by the kernel to stop running threads
when a domain is terminated. Such restrictions are ensured
by extended bytecode verification; details are discussed in
[6].

So far, the J-SEAL2 mobile object kernel has provided es-
sential functionality of an operating system kernel, such as
protection, mediated communication, and safe domain ter-
mination. The kernel has however not been able to control
resource allocation. In the next sections we present the de-
sign and implementation of a new resource control model
for Java and its integration in J-SEAL2, which will comple-
ment J-SEAL2 to a complete Java operating system kernel.
Therefore, a parent domain will act not only as a commu-
nication controller for its children, but also as a resource
manager.

3. OBJECTIVES AND RESULTING MODEL
The ultimate objective of this work is to enable the creation
of execution platforms where anonymous mobile objects, or
more general programs, may securely coexist without harm-
ing each other, and without harming their environment. Ex-
amples of such platforms are user-extensible databases [16]
or decentralized e-commerce and trading systems as e.g. in
[18]. Java Applet execution platforms – World-Wide-Web
browsers – as well as embedded Java devices also need such
guarantees. The desire to deploy this kind of platforms
translates into the following requirements:

• Accounting of low-level, physical resources as well as
higher-level, logical resources, such as threads.

• Prevention against denial-of-service attacks that are
based on CPU, memory, or communication misuse.

• Fair distribution of resources among concurrent do-
mains, even outside the context of malicious activities.

• Sufficiently abstract concepts2, in order to make map-
ping of policies into implementations more straightfor-
ward, and with a view to making resource control and
eventual billing more manageable.

2The abstractions presented in this paper are limited to the
resources provided by the kernel, such as memory and CPU.
An extensible high-level API addressing arbitrary resources
will be provided on top of the resource control model of the
kernel.

http://www.jseal2.com/
http://www.jseal2.com/


Mobile
Objects

Services Stationary Domains

Root
Seal

Domain
Manager

E-mail
Service

GUI
Service

Naming
Service

Net
Service

Sandbox
Trusted

�
Sandbox
Anonym.

Mobile
Object 2

Mobile
Object 3

Mobile
Object 1

Figure 1: Nested protection domains in J-SEAL2.

• Fine-grained load-balancing of mobile object applica-
tions on a cluster of machines.

Since some aspects of resource control are to be manageable
by the application developer, it is important that the general
model integrates well with the existing J-SEAL2 program-
ming model [5]. The resource control facilities shall reflect
the hierarchical system structure. Hierarchical process mod-
els have been used successfully by operating system kernels,
such as the Fluke micro-kernel [14]. The Fluke kernel em-
ploys a hierarchical scheduling protocol, CPU Inheritance
Scheduling [15], in order to enforce scheduling policies. In
this model, a parent domain donates a certain percentage of
its own CPU resources to a child process. Initially, the root
of the hierarchy possesses all CPU resources.

A general model for hierarchical resource control, such as
e.g. Quantum [22], fits very well to the J-SEAL2 hierar-
chical domain model. At system startup the root domain,
RootSeal, owns by default all resources the Java runtime
system allocates from the underlying operating system, for
example 100% CPU, the entire virtual memory, unlimited
network usage, the maximum number of threads the under-
lying Java Virtual Machine (JVM) [21] is able to cope with,
an unlimited number of subdomains, etc. Moreover, the
root domain, along with the other domains loaded at plat-
form startup, are considered as completely safe, and, con-
sequently, no resource accounting will be enforced on them.
This default behavior may however easily be overridden if
specific configurations should require accounting even for
trusted domains.

When a nested protection domain is created, the creator
donates some part of its own resources to the new domain.
Figure 2 illustrates the way resources are either shared or

distributed inside a seal hierarchy. In the formal model of J-
SEAL2, the Seal Calculus [33], the parent seal supervises all
its subdomains, and inter-domain communication manage-
ment was the main concern so far. Likewise, in the resource
control model proposed here, the parent seal is responsible
for the resource allocation with its subseals. This produces
a nested structure, where the parent seal is initially the sole
owner of its resources, and it may either share them or dis-
patch fractions of them to its subseals. However, the sum
of all resources within a protection domain, e.g., in the Un-
trusted application of figure 2, remains constant.

Our resource control model stems from further design goals,
such as portability and transparency: the next subsections
are dedicated to describing these.

3.1 Portability and Transparency
Portability is crucial for the success of any mobile object
platform. There are already some Java-based systems offer-
ing resource control facilities, such as Alta [32], GVM [4],
KaffeOS [1, 2], etc. However, they rely on modified Java
runtime systems, which are not portable. As a result, these
systems are not suited for large-scale applications that have
to support a wide variety of different hardware platforms
and operating systems. Our goal is to provide a general-
purpose model which is not dependent on specific imple-
mentation techniques, and to explore primarily completely
portable solutions. This entails that we have to cope with
certain restrictions and with performance levels sometimes
inferior to those of existing realizations. Our portable ap-
proach will nevertheless show its advantages in the longer
term: our solution will always perform somewhat slower
than the fastest JVMs without resource control mechanisms,
but, on the other hand, we will be able to exploit the latest
techniques in Java implementation optimizations, which will
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Figure 2: Illustration of the general resource control model.

often not be possible with non-portable implementations.

A related important requirement of our resource control
model is that unmodified off-the-shelf applications should
be able to execute on our platform. In other words, re-
source control must be transparent to applications which do
not explicitly manage their pool of resources. In section 6.2
we discuss to which extent this wish has been satisfied.

For portability reasons, it should also be stressed that the
goal of this work is not to implement any kind of real-time
guarantee. The resources that are managed and distributed
internally to the JVM are thus entirely dependent upon
what the JVM process itself is given by the underlying op-
erating system.

3.2 Minimal Overhead for Trusted Domains
Since J-SEAL2 is designed for large-scale applications, where
a large number of services and mobile objects are executing
concurrently, design and implementation must minimize the
overhead of resource accounting. Some domains, such as
core services, are fully trusted. Their resource consumption
need not be controlled by the kernel.

3.3 Support for Resource Sharing
In certain situations protection domains that are neighbors
in the hierarchy may choose to share some resources. In
this case, resource limits are enforced together for a set of
protection domains. As a result, resource fragmentation is
minimized. For example, consider a mobile object creating
a subdomain for a certain task. Frequently, the creating
domain does not want to donate some resources to the sub-
domain, but it rather prefers to share its own resources with
the subdomain. A property of our approach is that if a do-

main has unlimited access to a resource, this means that it
is sharing it with RootSeal.

3.4 Managed Resources
Within each untrusted protection domain, the J-SEAL2 ker-
nel shall account for the following resources:

• CPU RELATIVE defines the relative share of CPU. It
is expressed as a fraction of the parent domain’s own
relative share, but takes a slightly different meaning
when the parent itself is a trusted domain; the precise
semantics is exposed in section 4.2.

• MEM ACTIVE is the highest amount of volatile mem-
ory that a protection domain is allowed to use at any
given moment.

• THREADS ACTIVE specifies the maximal number of
active threads by protection domain at any moment.
Uncontrolled creation of threads has to be avoided, as
it results in increased load for the scheduler; it may
even crash the JVM, as there is currently no standard
Java construct allowing one to inquire about the maxi-
mum number of threads a JVM implementation is able
to cope with.

• THREADS TOTAL limits the number of threads that
may be created throughout the lifetime of a protection
domain, as thread creation is an expensive (kernel-
level) operation.

• DOMAINS ACTIVE specifies the maximal number of
active subdomains a protection domain is allowed to
have at any given moment. This limit is to minimize
management overhead inside the kernel by controlling
the complexity of the seal hierarchy at any time.



• DOMAINS TOTAL bounds the number of subdomains
that a protection domain may generate throughout its
lifetime, as domain creation and termination are ex-
pensive kernel operations.

Note that the kernel of J-SEAL2 is not responsible for net-
work control. This is because the micro-kernel does not
provide access to the network. Instead, network access can
be provided by multiple services. These network services or
some mediation layers in the hierarchy are responsible for
network accounting according to application-specific secu-
rity policies. Let us stress that the network is not a special
case, since J-SEAL2, thanks to its homogeneous model, may
limit communication with any services, like e.g. file IO.

Another resource kind that could be expected in the above
list of kernel-managed resources is the total amount of CPU
allocated to a given protection domain throughout its life-
time. It is however not clear what the unit of measure-
ment should be for this resource, while still preserving a
completely hardware-independent model. The main objec-
tive of this kind of resource accounting would be to pre-
vent applications from indefinitely cluttering up platforms;
in a heterogeneous set of servers it gives however more sense
to express total lifetime abstractly as the wall clock time
elapsed since the application was started, than as the num-
ber of consumed CPU cycles. Using as unit of measurement
the amount of executed Java bytecodes, although portable,
was also regarded as too low-level. Measuring wall clock
time can be achieved at the application level, by establish-
ment of a controlling domain with sufficient rights to kill all
misbehaving applications; this is a viable approach, since
in J-SEAL2, when a parent disposes of a child seal, all re-
sources are guaranteed to be freed properly. Accounting of
total CPU time was therefore discarded from the kernel.

Finally, there is also no such resource as MEM TOTAL, a
limit to the accumulated amount of memory used through-
out the lifetime of a protection domain. It could be needed
to prevent the kind of denial-of-service attacks where a ma-
licious domain creates a lot of dynamic objects in order to
keep the CPU busy with garbage collection. Its implemen-
tation would however require maintenance of an additional
counter, which we preferred to avoid. Instead, J-SEAL2 will
take preventive action by charging an abstract amount of
CPU as a compensation for the garbage collection induced
by each object created.

The six basic resource types retained for management by
the J-SEAL2 kernel are discussed in more detail in the API
section below.

4. API
In this section we give an overview of the resource control
API provided by the J-SEAL2 kernel. A detailed specifica-
tion of the API can be found in [7].

There are 2 kernel abstractions dedicated to resource con-
trol: A resource object of type Res represents a resource of a
certain type available for a protection domain. Resource sets
of type ResSet ease the management of multiple resources.

Furthermore, the kernel class Seal, which supports domain
creation and termination, has been extended to allow a par-
ent domain to restrict the resources of its children.

4.1 Definitions
In this section we provide some definitions, which simplify
the description of the resource control API. In the following
definitions let S denote an arbitrary domain in the hierarchy.

Root Res object: A root Res object of the domain S is
a Res object responsible for resource control in S. A
root Res object is returned by an invocation of the
method getCurrentRes in class Res (for details see
the following section).

Descendant Res object: A descendant Res object D of
the domain S is the result of splitting a root Res object
R of S. R is also called the parent Res object of D.
When a descendant Res object is used in a ResSet

object to create a nested domain, it will be used for
resource control in the created child domain.

Note that these definitions are relative to the domain S.
A descendant Res object D of the domain S is a root Res

object in a child C of S, if D was in the ResSet object used
for creating C. When we use the terms root and descendant
Res objects in the description of a method, we implicitly
assume Res objects of the domain invoking the method.

4.2 ClassRes
For each type of resource, a protection domain has an associ-
ated root Res object reflecting how much of the resource the
domain has been granted. A Res object defines a resource
limit and provides information on the current resource us-
age in order to support resource aware computations. It
offers an operation allowing a domain to split up some part
of the resource. This operation yields a new descendant Res
object that may be donated to children domains. The root
domain, RootSeal, creates an initial Res object for each type
of resource during startup. RootSeal distributes resources
to service components and to application domains accord-
ing to a configuration provided by the system administrator.
Table 1 summarizes the interface of a Res object.

The static method getCurrentRes returns the root Res ob-
ject for a given type of resource of the invoking domain.
The constants CPU RELATIVE, MEM ACTIVE, THREADS ACTIVE,
THREADS TOTAL, DOMAINS ACTIVE, and DOMAINS TOTAL (i.e.,
relative CPU share, active memory in bytes, as well as ac-
tive and cumulative threads and subdomains) are used to
indicate the requested resource type. The information, for
which type of resource a Res object is responsible, is perma-
nently associated with the Res object in order to prevent the
programmer from mixing up different types of resources by
mistake. The getType method returns the type of resource
a Res object is representing.

getLimit returns the resource limit of a Res object. A nega-
tive value means that there is no resource limit. Concerning
the semantics of the resource limit, the relative CPU share



Table 1: The Res API.
public final class Res {

public static final int

CPU_RELATIVE = 0,

MEM_ACTIVE = 1,

THREADS_ACTIVE = 2, THREADS_TOTAL = 3,

DOMAINS_ACTIVE = 4, DOMAINS_TOTAL = 5;

public static Res getCurrentRes(int type);

public int getType();

public long getLimit();

public long getUsage();

public Res split(long limit);

public void setLimit(long limit);

public void combine();

}

(CPU RELATIVE) is treated differently from all other resource
types. A relative CPU share of n means that domains cre-
ated with the corresponding Res object may use at most a
fraction of n

sum of all CPU limits in the system
of the CPU time

available to domains with a CPU limit ≥ 03. getUsage re-
turns the resource consumption of all domains sharing the
same root Res object. A negative value means that the J-
SEAL2 kernel does not account for the resource.

As the Res API does not expose any public constructor,
the split operation has to be used in order to create de-
scendant Res objects that may be donated to subdomains.
split may be invoked only on root Res objects. It returns
a new descendant Res object responsible for the same type
of resource as the root Res object, which becomes the par-
ent of the descendant. The descendant Res object has the
resource limit, which was passed to split as argument, and
an initial resource usage of zero. The resource usage of the
parent Res object is incremented by the limit given to the
descendant.

The setLimit method provides a mechanism to modify the
resource limit of a Res object. The new resource limit is
passed as argument. The resource usage of the parent Res

object is adjusted accordingly. A parent domain may use de-
scendant Res objects in order to monitor the resource usage
of children domains. With the aid of setLimit, the parent is
able to adjust the resource limits for the children domains.

The combine operation allows to merge Res objects that
have been split before. If it is invoked on a root Res ob-
ject, combine has no effect. If it is called on a descendant
Res object, the descendant is combined with its parent Res

3In our current implementation, this resource is controlled
by periodic sampling of the amount of executed bytecode
instructions. The precision of the measurement is imple-
mentation dependent; there is indeed a bias induced by the
fact that the CPU resource is not allocated by absolute val-
ues, but by relative shares, while in the implementation,
the reference value is the aggregated consumption measured
among untrusted domains and is not, as could be expected,
the resource taken as a whole.

Table 2: The ResSet API.
public final class ResSet {

public static ResSet getCurrentResSet();

public ResSet copy();

public Res getRes(int type);

public void setRes(Res r);

public void combine();

}

object, i.e., the resource usage of the parent object (if it is
accounted for) is reduced by the limit of the descendant.
The descendant Res object is marked as invalid and cannot
be used anymore. Combination is only possible, if the de-
scendant Res object is not used by any subdomain (i.e., all
subdomain created with the descendant Res object must be
terminated before).

4.3 ClassResSet
A ResSet object offers a convenient way to manage all re-
sources given to a domain. It holds exactly one Res object
for each type of resource. Table 2 summarizes the public
interface of a ResSet object:

The static method getCurrentResSet returns a ResSet ob-
ject with the root Res objects of the domain the calling
thread is executing in. This ResSet object may be used to
access the individual Res objects of the domain. The copy

method creates a shallow copy of a ResSet object. The copy
contains the same references to Res objects as the original
ResSet object. The getCurrentResSet and copy methods
are the only mechanisms allowing to allocate new ResSet

objects. There is no public constructor, because the API
enforces the constraint that a ResSet always holds exactly
one Res object for each type of resource.

The getRes method return the Res object for a given type
of resource. The argument is a resource constant defined in
the class Res. The setRes method replaces the Res object in
the set, which has the same resource type as the Res object
given as argument. The combine method offers a convenient
way to invoke combine on all Res objects in the set.

4.4 ClassSeal
The Seal abstraction provides methods for domain creation
(unwrapping) and removal (wrapping or disposing). Table
3 summarizes the unwrap methods of the Seal class. Other
methods are not shown, because they are not affected by
the resource control extension.

The unwrap method with 3 arguments requires a wrapped
representation of the subdomain to create (corresponding to
the serialized state of a mobile object), its name, as well as
a ResSet object with the resources for the new subdomain.
The unwrap operation with 2 arguments implicitly shares
the resources of the unwrapping domain with the created
child domain.

When a domain is created, the parent’s DOMAINS ACTIVE and



Table 3: The unwrap methods of class Seal.

public class Seal {

public static void unwrap(WrappedSeal wrapped,

String sealname,

ResSet resources);

public static void unwrap(WrappedSeal wrapped,

String sealname) {

unwrap(wrapped, sealname,

ResSet.getCurrentResSet());

}

...

}

Table 4: Resource control example.

long MB = 1024*1024;

ResSet rP = ResSet.getCurrentResSet();

Res cpu = rP.getRes(Res.CPU_RELATIVE);

Res mem = rP.getRes(Res.MEM_ACTIVE);

ResSet rA = rP.copy();

long cpuA = (long)(cpu.getLimit()*0.75);

rA.setRes(cpu.split(cpuA));

ResSet rB = rP.copy();

rB.setRes(mem.split(10*MB));

Seal.unwrap(childA, nameOfChildA, rA);

Seal.unwrap(childB, nameOfChildB, rB);

DOMAINS TOTAL Res objects are charged for the created sub-
domain(s), while the child’s resource objects are charged for
the CPU time consumed for unwrapping (involving class-
loading and linking), for memory allocation, as well as for
the child’s initializer thread.

4.5 Example
The code fragment in table 4 demonstrates how the resource
control API is used to control the resources of children do-
mains. This example corresponds to the Untrusted applica-
tion depicted in figure 2.

A parent domain, which has limited CPU and memory re-
sources, creates 2 subdomains: One child domain (childA)
gets 75% of the parent’s CPU resources and shares the mem-
ory resources with the parent, while the other child domain
(childB) receives 10 MB of active memory and shares the
CPU resources with the parent.

5. IMPLEMENTATION
In this section we present the techniques we are using for
the implementation of the resource control model discussed
in the previous sections. Since accounting for high-level re-
sources, such as active and cumulative threads and subdo-
mains, requires only minor modifications to a few J-SEAL2

kernel primitives, we focus on accounting for physical re-
sources, such as memory and CPU consumption.

5.1 No Direct Sharing
Since its initial release the J-SEAL2 kernel is designed to
ease the integration of resource control facilities. It guar-
antees accountability, i.e., user-visible objects belong to ex-
actly one protection domain. References to an object exist
only within a single domain4, i.e., in J-SEAL2 there is no
direct sharing of object references between distinct domains.
Therefore, it is possible to account each allocated object to
exactly one protection domain. This feature not only simpli-
fies resource accounting, but it is also crucial for immediate
resource reclamation during domain termination.

5.2 Bytecode Rewriting
In our approach we employ bytecode rewriting techniques
both for memory and CPU accounting. This is because it is
to our understanding the only entirely portable way to im-
plement the needed accounting mechanisms. It is unrealistic
to expect the source code of every application to be available
for modification. Moreover, if we want guarantees against
denial-of-service attacks, we cannot rely on foreign code to
perform any voluntary self-limiting operations, whereas if we
modify its bytecode before it starts executing, we can ‘oblige’
it to provide any information needed by the kernel and to
obey any restriction imposed on it by the environment. In-
stead of rewriting bytecode for CPU control, the J-SEAL2
kernel might e.g. ask the underlying operating system for in-
formation about the CPU consumption of each thread, but
this is possible only when Java threads are directly mapped
into operating system threads. Another approach would be
to run a modified JVM; the arguments against this are how-
ever exposed elsewhere in this paper. A further discussion
of existing (and non-portable) approaches is to be found in
section 7.1.

In the present paper, the bytecode of a Java class is modified
before it is loaded by the JVM [21]. Code for memory ac-
counting is inserted before each memory allocation instruc-
tion (for details, see section 5.7). CPU accounting uses an
abstract measure, the number of executed bytecode instruc-
tions. Therefore, code for CPU accounting is inserted in
every basic block of code (details are presented in section
5.8).

Rewriting for memory accounting has to be done before
rewriting for CPU accounting, because memory accounting
inserts additional bytecode instructions to enforce memory
limits, while accounting for CPU consumption does not in-
volve any object allocation.

4The only exception to this rule are Res objects (see sec-
tion 4.2) used for resource sharing. The parent domain is
charged for the Res objects of its children. Res objects can-
not be communicated between domains apart from domain
creation. Because Res objects are small and the number of
Res objects donated to a child is limited, this minor inex-
actness is irrelevant.



5.3 Domain Types
The resource control model supports trusted domains that
have unlimited access to certain types of resources. For per-
formance reasons, the J-SEAL2 kernel does not account for
the consumption of these resources. Regarding CPU and
memory accounting, we distinguish 4 types of domains:

NO-ACC: Domains without memory limit and without
CPU control may execute unmodified Java code, as
they do not need to execute any accounting instruc-
tions.

CPU-ACC: Domains without a memory limit, but with
CPU control have to execute CPU accounting instruc-
tions. However, code for memory accounting is not
required in such domains.

MEM-ACC: Domains with a memory limit, but without
CPU control have to execute memory accounting in-
structions. However, code for CPU accounting is not
required in such domains.

CPU-MEM-ACC: Domains with a memory limit and with
CPU control have to execute accounting code for mem-
ory allocation as well as for CPU consumption.

5.4 Accounting Objects
In MEM-ACC and in CPU-MEM-ACC domains objects of
the class MemAccount represent memory limit and current
usage. In CPU-ACC and in CPU-MEM-ACC domains ob-
jects of the class CPUAccount maintain CPU consumption.
These objects are used only by the J-SEAL2 kernel, they are
not accessible by user code. Each thread has associated the
MemAccount object and a CPUAccount object of the domain it
is executing in; null values indicate that a domain does not
need a MemAccount or CPUAccount object. Java thread-local
variables (instances of the class java.lang.ThreadLocal)
are used to implement this association. The MemAccount

and CPUAccount implementations provide the static method
getCurrentAccount, which returns the corresponding ac-
counting object of the domain the calling thread is executing
in.

Because access to MemAccount and above all to CPUAccount

objects may be extremely frequent, accessing these objects
from thread-local variables in every method would cause
a significant performance penalty5. Therefore, non-native
methods are rewritten in order to pass the necessary ac-
counting objects as additional arguments. Native methods
are excluded from rewriting, because we cannot account for
memory allocated and CPU time consumed by native code.
We are relying on modern inter-modular register allocation
algorithms implemented by state-of-the-art JVMs to mini-
mize the overhead of passing the accounting objects through
the whole method call-graph.

As an example for the rewriting process, consider method

5In Sun’s JDK 1.3 implementation thread-local variables are
managed as hash-maps, i.e., each access to a thread-local
variable requires a hash-map lookup.

a given in table 5. The rewritten6 version of method a for
a CPU-MEM-ACC domain is given in table 6. Here we are
only presenting the additional arguments, while the inserted
accounting code is discussed in sections 5.7 and 5.8. In this
example, method a receives two additional arguments for
the CPUAccount and MemAccount objects7. The additional
arguments are passed to all invoked methods (resp. con-
structors).

Table 5: Method a before rewriting.

void a(int x) {

b(null, x);

}

Table 6: Method a rewritten for a CPU-MEM-ACC
domain.
void a(int x, MemAccount mem, CPUAccount cpu) {

b(null, x, mem, cpu);

}

5.5 Callbacks from Native Code
Native code invoking Java methods complicates the resource
control implementation, because the native code is not aware
of the accounting objects to be passed to Java methods as ex-
tra arguments. The following three scenarios of Java method
invocation by native code are particularly important:

• Thread creation: The Java runtime system (native
code) invokes the run method of a thread object when
a thread is started with the aid of the start method.

• Static initializers: Static initializers are invoked di-
rectly during class-loading, i.e., they are invoked by
native code.

• Reflection: The methods invoke resp. newInstance of
Java’s reflection classes Method resp. Constructor are
native.

When the thread invoking a Java method from native code
has already set its thread-local accounting objects, it is suffi-
cient to provide for each method an additional one with the
same signature, which takes the required accounting objects
from thread-local variables and passes them to the rewritten
method. In the rewriting example given in tables 5 and 6 we
have to supplement the rewritten method with method a in
table 7. Note that when a constructor is rewritten accord-
ing to this scheme, the invocation of another constructor of
the same class or of a constructor of the superclass has to
antecede the lookup of the accounting objects.

6For the sake of easy readability, we present rewriting trans-
formations at the Java level, even though the implementa-
tion works at the JVM bytecode level.
7Note that in a CPU-ACC or MEM-ACC domain only one
additional argument would be necessary to hold the account-
ing object.



Table 7: Solving callbacks from native code.

void a(int x) {

MemAccount mem = MemAccount.getCurrentAccount();

CPUAccount cpu = CPUAccount.getCurrentAccount();

a(x, mem, cpu);

}

When a new thread starts executing its run method, the
thread-local accounting objects have not been initialized yet.
As protection domains in J-SEAL2 do not have direct access
to the class java.lang.Thread but have to employ a safe
wrapper class instead [6], the wrapper initializes the thread-
local accounting variables with the accounting objects of the
protection domain the new thread belongs to. These objects
are passed to the constructor of the wrapper by the J-SEAL2
kernel.

When a new protection domain is created, the J-SEAL2
kernel allocates a new initializer thread with the accounting
objects for the new domain. While starting this thread, the
thread wrapper initializes the thread-local accounting vari-
ables and starts to load the classes of the new protection
domain. The class-loading already happens in the account-
ing context of the new domain.

5.6 Class-loading
The J-SEAL2 kernel distinguishes between shared and repli-
cated classes [6]. Shared classes are loaded by the sys-
tem class-loader (they exist only once in the JVM), while
replicated classes, such as the classes of a mobile object,
are loaded by the class-loader of a protection domain (they
are reloaded in each domain). All JDK classes8 as well as
most classes from the J-SEAL2 kernel are shared. Certain
J-SEAL2 library classes that are frequently used may be
shared as well, in order to avoid the overhead of reloading
them multiple times.

Since a shared class may be referenced by fully trusted do-
mains (no accounting necessary) as well as by untrusted do-
mains (resource control required), it has to provide multiple
different versions of each method. The version without re-
source control corresponds to the unmodified code, while
the versions used by untrusted domains take the account-
ing objects as extra arguments and include the necessary
accounting instructions. Optimizations to reduce the code
size of rewritten shared classes are presented in [7].

Shared classes are rewritten off-line (e.g., during the instal-
lation of the J-SEAL2 platform), because we cannot modify
the system-classloader, which is part of the Java runtime
system, in a portable way. Replicated classes are rewritten
on-line, immediately before they are linked into the JVM.
Therefore, a mobile object may execute unmodified code on
a J-SEAL2 platform where it is trusted, while on another J-
SEAL2 installation the code of the same mobile object may
be rewritten for resource control.

8It is not possible to load a JDK class with a loader different
from the system class-loader.

Table 8: Rewriting methods in shared classes.

void a(int x) {

MemAccount mem = MemAccount.getCurrentAccount();

CPUAccount cpu = CPUAccount.getCurrentAccount();

if (cpu == null)

if (mem == null) a(x, (NoAccount)null);

else a(x, mem);

else

if (mem == null) a(x, cpu);

else a(x, mem, cpu);

}

void a(int x, NoAccount _no) { b(null, x, _no); }

void a(int x, CPUAccount cpu) { b(null, x, cpu); }

void a(int x, MemAccount mem) { b(null, x, mem); }

void a(int x, MemAccount mem, CPUAccount cpu) {

b(null, x, mem, cpu);

}

The example in table 8 shows how method a given in table
5 would be rewritten, if it was defined in a shared class.
A method with the same signature as the original method
dispatches to the appropriate implementation, when it is
invoked from native code. For each type of domain, there
is a different method implementation. In this example we
distinguished the signature of the NO-ACC implementation
from the dispatcher method by adding a dummy argument
of type NoAccount. The compilers of state-of-the-art JVMs
may be able to remove this useless argument.

Alternatively, it is possible to rename the NO-ACC im-
plementation. This approach complicates rewriting, since
a table of renamed methods of shared classes has to be
maintained, but it has the advantage that replicated classes
of trusted domains (e.g., classes of an authenticated, fully
trusted mobile object) can be rewritten very efficiently, be-
cause only method signatures in the constant-pool [21] are
affected, whereas the method code remains unchanged (in
contrast, passing the extra NoAccount argument requires ad-
ditional bytecode instructions).

5.7 Memory Control
Memory control has to limit the allocation of heap memory,
as well as the size of the execution stacks of running threads.

5.7.1 Heap
Enforcing memory limits requires exact pre-accounting for
memory resources, i.e., an overuse exception is raised before
a thread can exceed the memory limit of the domain it is
executing in. In contrast to JRes [12], which maintains a
separate memory limit for each thread, J-SEAL2 enforces a
single memory limit for a multithreaded domain or even for
a set of domains in the case of resource sharing.

Because a single MemAccount object has to maintain the
memory consumption and limit of a set of domains shar-
ing the same memory resources, access to the MemAccount

must be synchronized. Furthermore, accounting for an ob-
ject as well as its allocation and initialization has to be an



atomic action.

Before the object is allocated, J-SEAL2 ensures that the
memory limit is not exceeded and updates the MemAccount.
If the memory allocation fails, if the constructor raises an
exception, or if the allocating thread is terminated asyn-
chronously, we have to ensure that the modification of the
MemAccount is undone. Otherwise, other threads or even
other domains (using the same MemAccount) could suffer
from memory leakage. Details on the rewriting scheme for
memory allocation instructions can be found in [7].

When the garbage collector reclaims an object, we have to
update the MemAccount that has been charged for this ob-
ject. For this reason, the MemAccount maintains a weak ref-
erence for each allocated object, which does not prevent the
object from being reclaimed. When an object referenced by
a weak reference is garbage collected, the weak reference is
enqueued in a reference queue, which can be polled by the
MemAccount implementation (for details see [7]).

5.7.1.1 Object Size
The size of an object is calculated from the number of fields
for each Java basic type, the number of fields holding object
references, a constant for the object overhead, as well as a
constant for the accounting overhead (i.e., the overhead for
maintaining a weak reference to the allocated object). For
arrays, the actual size must be computed from the array
dimensions available on the execution stack. Depending on
the Java runtime system, the overhead for array objects may
be larger than for non-array objects, because of the size
information stored within arrays.

Constants for the object overhead and for the size of Java
basic types and object references are managed in a configu-
ration file by the system administrator. Since in general the
administrator does not know the object representation of
the underlying Java runtime system, a tool helps to approx-
imate these constants (e.g., by avoiding garbage collection
and measuring the difference of allocated memory before
and after creating certain types of objects). However, ob-
ject alignment is not taken into account.

5.7.1.2 Optimizations
While our approach works for objects as well as for arrays,
we are also implementing an optimization for non-array ob-
jects: Similar to JRes [12], in each allocated object we store a
reference to the corresponding MemAccount object. Rewrit-
ten finalizers are responsible for updating the MemAccount

when an object is reclaimed by the garbage collector. Thus,
we can avoid the significant overhead of maintaining weak
references, which is particularly important for small objects.

For arrays, such an optimization cannot be implemented in
pure Java. However, in practice the overhead for accounting
for allocated arrays is not a serious problem, because arrays
frequently are large objects (compared to the accounting
overhead they cause).

5.7.2 Stack
The computation of recursive methods may rapidly blow up
the execution stack of a thread without allocating a single
object. Especially if domains are allowed to create large
numbers of threads, an attacker could easily create a bunch
of threads, and in each thread create a very deep call stack
forcing the system to use large amounts of memory (pre-
cious memory, which cannot be garbage collected until the
methods return).

Most proposals for resource control in Java, like e.g. JRes
[12], do not take the memory consumption of the execution
stacks into account. Our implementation supports control
of stack memory as an optional feature. During the installa-
tion, the system administrator has to decide whether stack
control shall be enabled. When untrusted domains are al-
lowed to create only a small number of threads and the un-
derlying JVM allocates execution stacks that cannot expand
dynamically, it is sufficient to charge the MemAccount for the
maximum stack size9 when a thread is created.

However, if the JVM allows execution stacks to grow up sig-
nificantly, special effort is necessary in order to limit the size
of the stack. For this purpose, we rewrite non-native meth-
ods to pass an additional counter, indicating the amount
of memory the thread is allowed to use on the stack. On
method entry, this counter has to be reduced by the num-
ber of local variables and the maximum stack consumption
of the invoked method10. For each method, this information
is available in the Java class-file [21]. If the counter becomes
negative, an appropriate exception is raised. The counter
can be an integer that is passed by value. Therefore, a good
register allocator will help to keep the overhead small. As
a further optimization, leaf methods (i.e., methods that do
not invoke any other method) may omit the check of the
counter.

5.8 CPU Control
For CPU control, we are accounting the number of executed
bytecode instructions for each thread running in a CPU-
ACC or CPU-MEM-ACC domain. A high-priority sched-
uler thread, which is part of the J-SEAL2 kernel, executes
periodically in order to ensure that assigned CPU limits are
respected. The scheduler thread calculates the number of
executed bytecode instructions for each set of domains shar-
ing a CPU limit by summing up the CPU consumption of
all threads executing in a domain in the set. The sched-
uler compares the number of executed bytecodes with the
desired schedule. If a set of domains has exceeded its CPU
limit, the priorities of threads executing in these domains
are lowered.

9In order to approximately determine the maximum
stack size of a JVM implementation, we employ a cal-
ibration program executing a recursive method until a
StackOverflowError occurs. The maximum stack size cor-
responds to the product of the maximum recursion depth
and the size of a stack frame of the recursive method.

10A Just-in-Time compiler will completely remove the Java
stack when it creates code for a register machine. Neverthe-
less, the number of local variables and the maximum stack
consumption of a method can be used as an approximation
for the size of a stack frame of the method.



5.8.1 ClassCPUAccount
In contrast to a MemAccount object, which is shared by
all threads executing in a domain with memory account-
ing, each thread running in a domain with CPU accounting
has associated its own CPUAccount object. Since CPU ac-
counting occurs very frequently, it is important that multiple
threads do not have to synchronize on a common accounting
object. As only the scheduler thread makes any scheduling
decisions, it is sufficient to account for each thread sepa-
rately. The scheduler is responsible for accumulating the
accounting data of all threads executing in a set of domains
sharing a CPU limit.

A CPUAccount object simply maintains an integer counter,
which is updated by the thread owning the object. Table
9 shows some parts of the CPUAccount implementation11.
Because the scheduler thread has to read the counter value,
we are using a volatile variable in order to force the JVM
to immediately propagate every update from the working
memory of a thread to the master copy in the main memory
[17, 21].

Table 9: The CPUAccount implementation.

public final class CPUAccount {

public volatile int usage;

...

}

In general, updating the counter requires loading the usage

field of the CPUAccount object from memory (it is volatile),
incrementing the loaded value accordingly, and storing the
new value in the memory. A counter update requires about
6 bytecode instructions.

5.8.2 Scheduler
In this section we describe how the scheduler thread com-
putes the CPU consumption of a set of domains, and how
it employs different JVM priority levels in order to pre-
vent CPU overuse. However, we do not present a particu-
lar scheduling algorithm, because we are still experimenting
with different policies.

For each CPUAccount object, the scheduler thread always
stores the value of the counter it has read most recently.
The scheduler calculates the difference between the current
value and the previously stored value in order to determine
the amount of bytecode instructions executed during the
last time-slice (because of the lack of synchronization, the
scheduler must not reset any CPUAccount object). If a thread
has not existed before, the scheduler assumes the previously
stored value to be zero. When a thread terminates, its
CPUAccount object is not disposed of immediately, but it
is maintained until the scheduler has examined it.

The scheduler has to deal with an overflow in the counter of
a CPUAccount object. The size of the counter must be large

11For instance, we omitted the static getCurrentAccount
method mentioned in section 5.4.

enough so that its full range cannot be used in a single time-
slice. For current JVMs and a reasonably small time-slice, a
Java int is sufficient. However, in future high-performance
systems, CPUAccount objects may have to maintain long

values12.

We are using different JVM priority levels to control the
CPU consumption of individual domains. As protection do-
mains in J-SEAL2 do not have direct access to the class
java.lang.Thread (they have to use a safe wrapper class
instead [6], which does not offer any mechanism to change
the priority of a thread), an user-level thread cannot raise
its own priority.

Even though the Java language specification [17] does not
define any scheduling policy, current JVM implementations
respect assigned thread priorities. Many JVMs employ fixed
priority scheduling, where a low-priority thread cannot ex-
ecute, if there is a high-priority thread ready to run. The
J-SEAL2 kernel uses the distinct JVM thread priority levels
as follows:

• MAX PRIORITY: The maximum priority is reserved
to JVM internal tasks, such as handling weak refer-
ences. J-SEAL2 does not run any threads with the
maximum priority.

• MAX PRIORITY-1: J-SEAL2 uses this priority level
for kernel-level operations in order to prevent priority
inversion, i.e., when a high-priority thread is waiting
for an exclusive kernel lock (see [6]) because of a low-
priority thread T executing in kernel mode, the prior-
ity of T is temporarily boosted until thread T releases
the kernel lock.

• MAX PRIORITY-2: This priority level is used by the
J-SEAL2 scheduler thread.

• NORM PRIORITY–MIN PRIORITY13: The scheduler
assigns these priority levels to threads according to
the CPU consumption of the corresponding domain
and the assigned CPU share. Threads executing in
NO-ACC or in MEM-ACC domains are always as-
signed NORM PRIORITY. If a domain exceeds its
CPU limit, the priorities of its threads are reduced
(or at least the priorities of those threads overusing the
CPU). If a domain does not consume its assigned CPU
resources, the priorities of its threads may be increased
again (but never exceeding NORM PRIORITY). We
are experimenting with different scheduling algorithms
regarding the history of CPU consumption.

5.8.3 Rewriting Algorithm
In the description of the rewriting algorithm we use the fol-
lowing definition of an accounting block, which is related to
the concept of a basic block of code. In order to minimize

12For a long variable, the volatile declaration is crucial,
because some JVMs do not treat non-volatile long values
atomically [21].

13In this description we assume that NORM PRIORITY <
MAX PRIORITY-2.



the accounting overhead, we are considering blocks of max-
imal length. An accounting block is a bytecode sequence
fulfilling the following constraints:

• If a bytecode instruction, which is neither a method
(resp. constructor) invocation nor a JVM subroutine
invocation, changes the control-flow non-sequentially
(e.g., method return, exception raising, branch, JVM
subroutine return, etc.), it must be the last instruction
in the accounting block. That is, with the exception
of method (resp. constructor) and JVM subroutine in-
vocations, only the last bytecode instruction in the
block may change the control-flow non-sequentially. A
method invocation does not terminate an accounting
block, because otherwise the average block size would
be reduced significantly, as method invocations are
very frequent in object-oriented programs.

• Only branches to the begin of the block are allowed.
There is no bytecode instruction branching to another
instruction in the same method, which is not the first
one in its block. Furthermore, the first instruction of
an exception handler must be always the first instruc-
tion in its block.

The bytecode rewriting algorithm involves the following 4
steps (an efficient implementation may perform multiple steps
together):

1. Method (resp. constructor) invocations are rewritten
in order to pass the CPUAccount object as extra ar-
gument. Because the CPUAccount is always the last
argument14, it can be pushed onto the stack immedi-
ately before the method (resp. constructor) invocation
instruction.

2. An accounting block analysis (similar to a basic block
analysis in traditional compilers) partitions the method
code into a set of accounting blocks. Each block has an
attribute indicating the accounting size of the block.
Initially, this attribute holds the number of bytecode
instructions in the block15. Furthermore, a control-
flow graph with the accounting blocks as nodes has to
be constructed, if optimizations are to be performed in
order to minimize the accounting overhead. Without
any optimizations, accounting instructions have to be
inserted into every block.

3. Optimizations analyze the control-flow graph in order
to detect situations where accounting for multiple dif-
ferent blocks may be combined. The optimizations
may decrement the accounting size attribute of one

14Since rewriting for memory accounting is done before
rewriting for CPU control, the MemAccount argument is
passed always before the CPUAccount object.

15In order to improve the accuracy of measurement, the J-
SEAL2 administrator may configure a weighting of bytecode
instructions (integer values) according to their complexity.
To simplify matters, we assume that all bytecode instruc-
tions have a weighting of 1.

block and add it to the accounting size of another
block. If the accounting size of a block becomes zero, it
does not require any accounting instructions. Details
concerning optimizations are presented in [7].

4. For every block with a positive accounting size, ac-
counting instructions are inserted at the begin of the
block. The only exception to this rule is the first
block in a constructor: The invocation of another con-
structor of the same class or of the superclass has
to antecede the accounting code. The included in-
structions add the accounting size of the block plus
the number of inserted accounting instructions to the
CPUAccount object. For performance reasons, updates
of the CPUAccount object are not synchronized.

This approach ensures that a thread is charged for at least
the number of bytecode instructions it executes. For each
accounting block, a thread is charged for the number of in-
structions in the block, before it executes these instructions
(pre-accounting). When an instruction, which is not the
last one in its accounting block, raises an exception, the
thread has been charged for more instructions than it has
consumed. However, since the number of executed bytecode
instructions is only an approximation of the exact CPU con-
sumption, and because exception handling is expensive on
many JVM implementations, this possible inexactness does
not pose any problem.

5.9 Accounting for Garbage Collection
In order to prevent denial-of-service attacks by causing the
garbage collector to consume a considerable amount of CPU
time (e.g., an attacker may create a lot of garbage without
exceeding its memory limit), the J-SEAL2 kernel has to ac-
count for the time spent by the garbage collector. Only
CPU-MEM-ACC domains can be charged for the garbage
they produce, because accounting for garbage collections
requires the information, which domain has allocated a cer-
tain object (such information is not available in NO-ACC
or CPU-ACC domains), and because the time spent by the
garbage collector affects the CPU consumption of a domain
(CPU consumption is not measured in NO-ACC or MEM-
ACC domains).

Since the exact CPU time spent by the garbage collector is
not known, we are using an abstract measure. The J-SEAL2
administrator defines a rough approximation of the number
of bytecode instructions required to reclaim an object. Be-
fore an object is allocated, the J-SEAL2 kernel charges the
CPUAccount object of the allocating thread. That is, a do-
main has to ‘pay’ for the garbage it eventually will produce
at the time it ‘buys’ an object. This simple approach has
the advantage that a CPU-MEM-ACC domain is charged
for all garbage it produces, even if the domain has already
terminated when some objects are reclaimed.

5.10 Compensating for Native Code
With the aid of bytecode rewriting techniques, it is not pos-
sible to account for memory allocation and CPU consump-
tion in native code. Untrusted applications are not allowed



to bring native code libraries into the system. Concern-
ing JVM-provided standard operations, the J-SEAL2 kernel
tries to compensate for resources used by native code and
prevents untrusted domains from using certain functional-
ity leading to a significant resource consumption by native
code. In the following we describe some important cases
of resource consumption in native code and how J-SEAL2
solves them:

• Class-loading: The Java runtime system manages an
internal table of loaded classes. Memory for compiled
methods is allocated by the Just-in-Time compiler,
which is usually implemented in native code. How-
ever, the set of classes untrusted domains (e.g., mobile
objects) are allowed to access is limited and known to
the J-SEAL2 kernel. Therefore, the kernel accounts
for the classes using an approximation, which is pro-
portional to the size of the class-files.

• Deserialization: J-SEAL2 uses Java serialization in or-
der to create messages to be transferred across domain
boundaries. When the receiving domain opens a mes-
sage, it is being deserialized using the class-loader of
the receiving domain to resolve class names. Deseri-
alization requires native methods to allocate objects
without invoking their constructors. J-SEAL2 solves
this hurdle by storing the amount of objects for each
type, which is part of the serialized object graph, in
the message. The receiver performs resource checks
before deserializing the message.

• Object cloning: Java supports object cloning to create
shallow copies of objects. The shallow copy is allocated
by a native method. A simple solution is to forbid
untrusted domains to clone objects.

• Reflection: The Java reflection API provides a mecha-
nism to indirectly create a new instance of a class. The
object is allocated by native code. J-SEAL2 simply
prevents untrusted domains from using the reflection
API.

6. EVALUATION
This section assesses our approach, first by presenting the
performance achieved with our current implementation, then
by discussing the limitations.

6.1 Measurements
While in J-SEAL2 the overhead for memory control is com-
parable to the overhead caused by JRes16 [12], the overhead
of CPU control based on bytecode rewriting techniques has
to be examined carefully, because such an approach has not
been used before. In this section we present performance
measurements proofing that the overhead due to our com-
pletely portable implementation of CPU accounting is ac-
ceptable on modern JVM implementations17.

16For an application allocating a new object every 250 byte-
code instructions, the overhead for memory control is less
than 18%, if no memory limit is exceeded.

17We are not measuring the overhead for CPU control in-
curred by the scheduler, as it can always be kept small by
choosing an appropriate time-slice.

We have implemented a bytecode rewriting tool that per-
forms the necessary transformations of Java classes to sup-
port resource control. The tool was designed to add re-
source accounting instructions into arbitrary Java applica-
tions, to create an extended version of the JDK, and to
modify mobile object applications in J-SEAL2. Our current
bytecode rewriting tool supports off-line transformations of
arbitrary Java classes. However, we are integrating the re-
source control mechanism in the J-SEAL2 kernel, which re-
quires also load-time rewriting of mobile objects. Detailed
results of our work will be published on our web pages at
http://abone.unige.ch/.

There are several low-level bytecode engineering frameworks
written in Java (e.g., BCA [19], JOIE [11], BIT [20]), as
well as higher-level frameworks, such as e.g. Javassist [10].
Our bytecode rewriting tool is based on BCEL (Byte Code
Engineering Library, formerly called JavaClass) [13], which
allows bytecode manipulations of Java classes and is also
entirely written in Java. We chose BCEL since it is one of
the most mature bytecode instrumentation frameworks and
provides a powerful and intuitive API that is well adapted
for our requirements.

We measured the standard SPEC JVM98 benchmarks [30]
on a Linux platform (Athlon AMD 1200MHz clock rate,
256MB RAM, Linux kernel 2.4.2) with IBM’s JDK 1.3 im-
plementation, which includes one of the best Just-in-Time
compilers available today. We measured the overhead due
to CPU accounting in three different configurations:

• Ubench-Ujdk: Unmodified benchmarks on an unmodi-
fied JDK.

• Rbench-Ujdk: Rewritten benchmarks on an unmodified
JDK.

• Rbench-Rjdk: Rewritten benchmarks on a rewritten
JDK18.

For each measurement, table 10 shows the execution time
of the benchmark in seconds (rounded to 3 decimal places),
as well as the speedup of the original code compared to the
rewritten version (rounded to 2 decimal places). In order to
minimize the impact of compilation and garbage collection,
all results represent the median of 101 different measure-
ments. Furthermore, we also computed the geometric mean
for each configuration. We rewrote about 520 Java class-files
for the CPU-aware version of SPEC JVM98 benchmarks,
and about 5400 class-files for the extended version of the
JDK.

The results in table 10 show that the overhead due to CPU
accounting is about 25%, if we rewrite applications as well
as the whole JDK. With an unmodified JDK, the overhead
can be almost halved (this configuration is not useful for
resource control, but it helps to extract the overhead due

18Modern JVMs allow to run user-defined library classes with
the -Xbootclasspath option.

http://abone.unige.ch/


Table 10: Benchmarks measuring the overhead of CPU accounting (time in seconds).
Benchmark Ubench-Ujdk Rbench-Ujdk Rbench-Rjdk

227 mtrt 3,783 (1,00) 4,517 (1,19) 4,788 (1,27)
202 jess 5,299 (1,00) 5,842 (1,10) 6,415 (1,21)
201 compress 11,605 (1,00) 13,344 (1,15) 13,449 (1,16)
209 db 19,775 (1,00) 20,443 (1,03) 23,381 (1,18)
222 mpegaudio 4,484 (1,00) 6,316 (1,41) 6,345 (1,42)
228 jack 4,120 (1,00) 4,294 (1,04) 5,033 (1,22)
213 javac 9,400 (1,00) 10,643 (1,13) 12,401 (1,32)

Geometric Mean 6,970 (1,00) 7,989 (1,15) 8,717 (1,25)

to the rewritten JDK). Note that we did not apply any op-
timizations to reduce the accounting overhead. Simple op-
timization rules, as discussed in [7], can help to reduce the
overhead significantly. The implementation of the optimiza-
tion algorithm is still in progress.

6.2 Limitations
Here we present the limitations that are inherent to, respec-
tively, the way we implement resource control, and the de-
sign of the programming model. We terminate with a short
discussion of the security provided by our approach.

6.2.1 Limitations of the Implementation
Our objective is to achieve a completely portable implemen-
tation of resource control. This means that we should be
able to supervise off-the-shelf applications, and also that the
execution environment should be independent of any under-
lying hardware and operating system.

In reality, we had to resort to language features (e.g., weak
references) that exist only since the Java 2 platform [26].
These are incorporated in the application during the rewrit-
ing process, thus allowing backwards compatibility with code
compiled for previous versions of Java. Another limitation
comes from the interdiction to use several parts of the reflec-
tion package, because it enables the programmer to circum-
vent our resource control mechanisms. The same remark
applies to the use of arbitrary native code libraries.

These limitations still allow our bytecode processing tool
to encompass a very wide range of applications. However,
once the goal is not only to monitor resource consump-
tion, but also to control it, additional restrictions apply.
In our approach, the runtime resource control libraries can-
not e.g. allow an application to change the priorities of its
threads, since this would confuse our scheduler. More gen-
erally, schedulers entirely implemented in Java are always
dependent on the reliability of the underlying threads and
related priority mechanisms. This is the price to pay for
portability.

Finally, if we restrict ourselves to the J-SEAL2 platform,
then the application must conform to the corresponding pro-
gramming model, which implies respecting all of the previ-
ously mentioned limitations, plus an additional set, as can
be found in [6].

6.2.2 Limitations of the Programming Model
Our approach is designed to enable the transparent execu-
tion of legacy applications, as long as they respect the above
limitations; their resource consumption will then be con-
trolled by the runtime system without their knowing.

From the moment one wants to develop a resource-aware
application, it becomes necessary to conform to the basic
API described in section 4. This API is however primar-
ily designed for use by the runtime system, and is probably
too low-level for the application programmer. Therefore, we
still have to define an uniform and extensible programming
interface that includes kernel-level resources, as well as ser-
vice access, bandwidth limitations, elapsed wall-clock time,
etc.

Also on our todo-list is the development of high-level pro-
gramming tools in order to support a friendlier event notifi-
cation mechanism than the overuse exceptions generated by
the J-SEAL2 kernel. User-specified thresholds should enable
applications to receive warnings in a timely manner before
the actual overuse happens.

6.2.3 Coverage of Security Issues
Since the focus of this paper is on preventing excessive re-
source consumption by hostile or poorly implemented pro-
grams, we put forward the following qualitative characteri-
zation of our approach, until the resource control model is
completely integrated in J-SEAL2:

• When a thread of a parent domain is executing, it is
able to terminate its children.

• Because there is no direct sharing between domains,
all resources of a terminated domain can be reclaimed
properly.

• A parent can always reserve a fraction of its CPU share
for a supervisor thread, which will start executing with
priority NORM PRIORITY. This thread wakes up pe-
riodically to terminate children that are too long in the
system; therefore, this thread will not use a lot of CPU
time, and the scheduler will not lower its priority. All
threads in the subdomains will have a priority less or
equal to NORM PRIORITY (in particular, a thread
which uses the CPU excessively will have a priority
less than NORM PRIORITY). Thus, the supervisor
will be eventually scheduled by the JVM, and be able
to remove malicious domains.



• Resource limits are assigned by the parent, and only
fully trusted domains are able to create new quotas ex
nihilo. A domain with resource limits is not able to
extend its own limits.

7. RELATED WORK
We distinguish two broad categories of related work on adding
resource control to Java: those which have security as main
objective, and those which follow other motivations.

7.1 Resource Control for Security Purposes
Compared to existing proposals for realizing resource con-
trol in Java, we broadly differentiate our approach in two
ways: first, whether the model supports a process-based ap-
proach, with well-defined domain boundaries and resource
allocation for each application, and, second, to which extent
the implementation is portable or not.

JRes [12] is a resource control system which takes CPU,
memory, and network resource consumption into account.
The resource management model of JRes works at the level
of individual Java threads; in other words, there is no notion
of application as a group of threads, and the implementation
of resource control policies is therefore cumbersome. JRes
is a pure resource accounting system and does not enforce
any separation of domains; covering this other aspect is the
goal of J-Kernel [34], a complementary project of the same
research team. For its implementation, JRes does not need
any modification to the JVM, but relies on a combination
of bytecode rewriting and native code libraries. To perform
CPU accounting, the approach of JRes is to make calls to
the underlying operating system, which requires native code
to be accessed19. For memory accounting, it essentially uses
bytecode rewriting, but still needs the support of a native
method to account for memory occupied by array objects.
Finally, to achieve accounting of network bandwidth, the au-
thors of JRes also resort to native code, since they swapped
the standard java.net package with their own version of it.

KaffeOS [1] is a Java runtime system which supports the
operating system abstraction of process to isolate applica-
tions from each other, as if they were run on their own
JVM. Thanks to KaffeOS, a modified version of the freely
available Kaffe virtual machine [35], it is possible to achieve
resource control with a higher precision than what is possi-
ble with bytecode rewriting techniques, where e.g. memory
accounting is limited to controlling the respective amounts
consumed in the common heap, and where CPU control does
not account for time spent by the common garbage collec-
tor working for the respective applications. The KaffeOS
approach should by design result in better performance, but
is however inherently non-portable. This means that op-
timizations found in compilers and standard JVMs are not
benefited from: in a recent publication [2] the authors report
that, in absence of denial-of-service attack, IBM’s compiler
and JVM [24] is 2–5 times faster than theirs.

Developed by the same team as KaffeOS, Alta [32] is a pro-
totype based on the Fluke hierarchical process model, and

19More precisely, CPU accounting in JRes is based on native
threads, a feature not supported by every JVM.

implemented on the Kaffe virtual machine. The main dif-
ferences with KaffeOS are that a single garbage collector is
responsible for all applications, and that Alta entirely re-
spects the hierarchical process model of Fluke by providing
resource control APIs, whereas KaffeOS only retains a more
implicit nested CPU and memory management scheme.

NOMADS [29] is a mobile agent system which has the abil-
ity to control resources used by agents, including protection
against denial-of-service attacks. The NOMADS execution
environment is based on a Java compatible VM, the Aroma
VM, a copy of which is instantiated for each agent. There
is no resource control model or API in NOMADS; resources
are managed manually, on a per-agent basis or using a non-
hierarchical notion of group. Relying on a specialized VM, it
follows that the overhead is smaller than with our approach;
currently, CPU control is however not implemented.

Many other systems are proposed in the literature, but none
of them are as complete as JRes, Alta, and KaffeOS. An ex-
cellent overview is provided in [3]. To summarize, we might
say that J-SEAL2 proposes a protection model inspired both
from Alta and J-Kernel, and a memory accounting imple-
mentation that is more reminiscent of JRes.

7.2 Other Java-centric Approaches to Resource
Control

There are several lines of research, where environments and
analysis tools have been designed that can be exploited more
or less with the same objectives as exposed in this paper.

The Real-Time for Java Experts Group [8] has published a
proposal to add real-time extensions to Java. One impor-
tant focus of this work is to ensure predictable garbage col-
lection characteristics in order to meet real-time guarantees.
For instance, the specification provides for several memory
management schemes, such as areas with limited lifetime
or bounded allocation rates, which could be implemented –
or at least simulated – with the J-SEAL2 extensions de-
scribed in the present paper. Another real-time system,
PERC [23], extends Java to support real-time performance
guarantees. To this end, the PERC system analyzes Java
bytecodes to determine memory requirements and maximal
execution times, and feeds that information to a real-time
scheduler. The objective of real-time systems is to provide
precise guarantees e.g. for worst-time execution; our focus,
on the other hand, is on computing approximated resource
consumptions in order to prevent denial-of-service attacks.
We are more interested in the relative values of applica-
tions, and less in absolute figures. This is confirmed by the
fact that we are not trying to estimate their real CPU con-
sumption, but rather to compare the respective number of
executed bytecodes.

Profilers constitute another class of tools that have many
aspects in common with resource control: both intend to
gather information about resource usage. Profilers however
are designed to help developers optimize the efficiency of
their applications, and not to externally control their re-
source consumption. The Java Virtual Machine Profiling
Interface (JVMPI) [28] is an API created by Sun; it is a set



of hooks to the JVM which signals interesting events like
thread start and object allocations.

Finally, we mention some approaches that rely on economics-
based theories, using virtual currencies to achieve natural
load-balancing of concurrent applications, as well as recy-
cling of unused resources in open distributed environments,
with the anticipated side-effect of preventing denial-of-service
attacks [31]. Our focus is however more on how to implement
the basic resource accounting mechanisms on a specific plat-
form, Java, than on the design of high-level – and distributed
– resource allocation policies. Nevertheless, whereas the
spirit of this paper is rather conservative, it does not ex-
clude the application of the presently described techniques
to the implementation of open computational markets.

8. CONCLUSION
The contributions of this paper are two-fold. First, we pro-
pose a highly portable implementation of resource control in
Java, and second, we show how this approach can be cleanly
integrated into an existing framework, J-SEAL2, with the
creation of a corresponding programming model. The tech-
niques described in this paper have been tested with an off-
line rewriting tool, and the overhead due to the accounting
code has been measured with the standard SPEC JVM98
benchmarks.

Whereas other approaches focus on high performance, or
demonstrate a long-term, deep re-design of the Java runtime
system, our proposal might be grossly characterized as a
language-based patch. Our resource control system does in-
deed not provide the same level of accuracy of measurements
and execution speed. On the other hand, J-SEAL2 per-
fectly fulfills its job of isolating applications from each other,
and particularly of preventing abusive resource consumption
originating from inside the execution platform. Moreover,
the extensive compatibility and portability of our approach
makes it immediately usable for the benefit of large-scale
distributed object systems, especially when mobile code is
involved.
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