
Portable Resource Reification in
Java-based Mobile Agent Systems

Alex Villazón1 and Walter Binder2

1 University of Geneva, Switzerland
villazon@cui.unige.ch

2 CoCo Software Engineering GmbH, Austria
w.binder@coco.co.at

Abstract. Resource awareness is an important step towards the realization of adaptable
software, something which is particularly desirable in the context of mobile code and mo-
bile agent environments. Since resources (CPU, memory, network bandwidth, etc.) are not
available and manipulable as first-class entities in standard programming models, such as
in the Java language, some kind of reification seems indispensable. This is however difficult
to achieve, especially if portability is a requirement. In this paper we describe a mobile
agent execution environment that reifies several aspects of both the execution environment
itself and of the mobile agents it hosts. We explain how resources consumed by an agent
are reified directly from the agent code. Performance measurements show that our approach
incurs only moderate overhead.

1 Introduction

Resource awareness in the context of mobile agents has been identified as an important concept
for agent adaptability. If a mobile agent is aware of its resource consumption, it may use this
information e.g. to optimize its migration decisions. Furthermore, a mobile agent platform that
executes unknown foreign code has to control resource allocation, i.e., the system has to account
the resources consumed by an agent and to prohibit allocations exceeding the agent’s resource
limits, in order to prevent denial-of-service attacks caused by malicious (or buggy) agents, which
may even crash the agent execution platform [21, 4]. Information about resource consumption
may be used to implement different control algorithms (e.g., market-based [20, 6], energy-based [2],
applying different scheduling policies [4], etc.). Moreover, resource accounting and control may be
targeted towards provision of quality of service or of usage-based billing, in order to amortize
investments in hardware and software set at customers’ disposal.

These considerations raise questions concerning the manipulation of resource-related informa-
tion and the programmability of agents, since resource-related aspects are clearly non-functional,
i.e., frequently these aspects are not directly related to the basic task of the agent, and therefore
it is important to separate them from the base-level code of the agent. Another important issue
is how resource consumption can be reified, i.e., how it can be made accessible for manipulation.
Unfortunately, most mobile agent execution environments do not provide any means for obtaining
information regarding the resource consumption of different agents. As a remedy, we suggest to
integrate reflective capabilities into the execution environment (EE). Reflection and reification are
closely related concepts, since a reflective system requires the reification of some of its internals.
That is, reflection is the capability of a system to reason about and act upon itself [15]. A reflec-
tive system is composed of a base-level, which is the part of the system reasoned about, and a
meta-level, which has access to the reified information about the base-level.

Even though Java [12] is the predominant implementation language for mobile agent systems1,
it does not support resource accounting. Proposed solutions for resource control in Java are either
1 For an (incomplete) list of different mobile agent platforms see The Mobile Agent List at http:

//www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole/mal/mal.html. Most of the systems
presented there are based on Java.

http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole/mal/mal.html
http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole/mal/mal.html


incomplete, or rely on native code, on low-level resource control mechanisms offered by the under-
lying operating system, or on a modified Java Virtual Machine (JVM) [14]. Consequently, these
systems are not well suited to be deployed in heterogeneous environments, such as the Internet,
where a wide variety of different hardware platforms and operating systems has to be supported.
Because portability is of paramount importance for the success of a mobile agent system, resource
control facilities have to be provided on top of standard Java runtime systems.

Resource control has to cover physical resources, such as CPU, memory, and network band-
width, as well as logical resources, such as threads, the number of agents, etc. Moreover, commu-
nication with agents or services is also subject to resource control policies, which may e.g. limit
the communication bandwidth and the size of exchanged messages. The reification of physical
resources poses some serious difficulties, as it should be based only on the information that can
be obtained from the agent code itself, without resorting to any external functionalities, such as
those provided by the operating system. Thus, one of our goals is to provide an abstract and
portable representation of the physical resources mentioned above, as well as mechanisms allowing
to manipulate them without relying on functionalities specific to a particular operating system.

In addition to this, our approach allows to fully exploit all advantages of mobile code, since
the reification itself may be performed by mobile code. That is, special code is injected into the
mobile agent platform in order to customize the reification process. This is achieved by allowing
agents to interact with reflective components inside the EE, rather than only with an external
interface of the reflective system.

This paper is organized as follows: In section 2 we discuss related work on reflection and
resource control in mobile agent environments. In section 3 we describe the generic architecture
of a mobile agent platform, which enables the reification of physical and logical resources, as well
as of communication structures. In section 4 we explain some basic ideas for resource reification
in Java. We focus on physical resources and give an overview of our techniques to transparently
reify memory and CPU resources by directly inspecting the code of mobile agents. In section 5 we
present benchmarking results of our fully portable techniques for resource reification in Java. The
last section concludes this paper.

2 Related Work

We distinguish two broad categories of related work: Proposals which apply reflective techniques
to mobile agents, and systems which support resource control and may be used to implement
mobile agent platforms. Even though resource control is beneficial for all kinds of programming
environments, we focus on Java technology, because it is the common implementation language
for mobile agent systems.

2.1 Reflection in Mobile Agent Environments

Some ideas about applying reflection in the context of mobile agents have been sketched by Ledoux
et al. [13] and by Watanabe et al. [23].

Ledoux et al. suggest to use reflection in order to reason about and act upon the agent’s transfer
mechanism. They point out that reification of resources, as well as of relationships between agents
and resources, is crucial for the realization of an open architecture. In other words, mobile agents
should be aware of the underlying infrastructure. In their approach reflection is exploited to allow
different granularities in the migration process, and therefore to elaborate a fine-tuned model for
code mobility. Reflection is thus placed inside the execution environment and not at the level of
mobile agents.

Watanabe et al. take a different approach, placing reflection at the mobile agent level. This
approach focuses on a fault-handling mechanism by defining meta-agents that can customize the
base-agents’ fault-handling strategies (e.g., by introducing user-defined before- and after-fault han-
dling methods at the meta-level of each agent).



Applying reflection to mobile code technology is therefore recognized as an interesting approach
to improve openness. Regarding the combination of reflection and mobile code, there are two
complementary issues:

– Tuning of internal aspects of the EE, such as mobility and communication, through reflection
and reification of internals of the EE.

– Introducing new strategies to handle specific aspects of agent execution, through reflection
and reification of agents.

The approach presented in this paper takes advantage of these two aspects: Reflection is used at
both the execution environment and mobile agent levels. This requires a particular infrastructure,
which we call a reflective EE (REE), supporting reification of internals of the EE, as well as
reflection of the agents. The REE enables the execution of mobile agents as reflective entities that
interact with the reified internals of the environment. The REE allows mobile agents to influence
their own execution or the execution of other agents, and to interact with internals of the REE.

Kava [24] is a ‘reflective Java’, which is based on load-time bytecode rewriting and supports
the adaptation of applications. Kava has been used to specify and implement security policies
for mobile code [25]. Reflection is used to insert security checks into the compiled application,
avoiding the need to re-compile the application when different security checks are required. The
security mechanism is implemented by meta-objects, i.e., special objects containing reflective in-
formation [15] that act as reference monitors and enforce security policies. Meta-objects are part
of the trusted computing base and can be securely loaded from a remote source. Kava also sup-
ports some limited forms of resource accounting, it enforces a limit on the number of threads an
application may create. A meta-object acts as a resource monitor and throws an exception, if the
thread limit is exceeded.

2.2 Resource Control in Java Environments

JRes [10] is a resource control library for Java, which takes CPU, memory, and network resource
consumption into account. Accounting for CPU relies on native code and on the underlying oper-
ating system2. Memory accounting in JRes is closely related to the reification of memory resources
presented in this paper, although JRes still needs the support of a native method (to account for
memory occupied by array objects). To achieve accounting of network bandwidth, the authors of
JRes also resort to native code, since they swapped the standard java.net package with their
own version of it. Consequently, JRes does not meet our requirements regarding portability.

KaffeOS [1] is a Java runtime system based on a modified JVM. It supports the operating
system abstraction of process to isolate applications or mobile agents from each other, as if they
were run on their own JVM. Thanks to KaffeOS, it is possible to achieve resource control with
a higher precision than what is possible with our portable techniques for resource reification.
The KaffeOS approach should result in better performance by design, but is however inherently
non-portable.

NOMADS [17] is a mobile agent system which has the ability to control resources used by
agents, including protection against denial-of-service attacks. The NOMADS execution environ-
ment is based on a modified JVM, the Aroma VM, a copy of which is instantiated for each agent.
There is no resource control model or API in NOMADS; resources are managed manually (on a
per-agent basis) and the resource related information is not accessible to agent. Since NOMADS
is based on a modified JVM, its portability is limited.

3 Reflective Execution Environment (REE)

Reflection is the capability of a computation system to reason about and act upon itself and to
adjust itself to changing conditions [15]. Reflective systems provide more openness than traditional
2 More precisely, CPU accounting in JRes is based on native threads, a feature not supported by every

JVM.



systems, since they allow inspection and modification of internal functionalities. Reflective systems
require the reification of some aspects of the base-level computational system. In other words,
reification makes something accessible, which normally is not available in the programming model.

Mobile agents offer high flexibility for application deployment, dynamic application extensi-
bility, and configurability. However, frequently the corresponding EE provides insufficient means
for manipulating internal functionalities, and hence limits the resulting software adaptability. The
application of reflection to mobile agents aims at providing enhanced adaptability and flexibility
for the implementation of agent applications.

Fig. 1 shows how it is possible to enhance adaptability using reflection and mobile code. The
application of mobile code usually improves adaptability w.r.t. a classical application, since parts
of the service can be implemented as mobile components, which are pushed into the system dy-
namically. However, the adaptation of mobile components is normally performed based on external
information requiring to stop the application, to modify the code, and to deploy it again (see (a)
and (b)). The reflective approach enables mobile components to perform the adaptation exploit-
ing internal information about the EE and their own execution (see (c)), without any external
configuration.

Service Service

config

(a) Classical application

Service

configconfig

Mobile

Mobile

(b) Adaptation using mobile agent (c) Adaptation with mobile agent and reflection

(static code)

Code

Code

Fig. 1. Adaptation through mobile code and reflection.

Thus, the design of a REE for mobile agents requires the following considerations: (1) which
aspects of the EE shall be reified, and (2) which parts of incoming mobile agents have to be reified.
These considerations help to define the architecture of the different elements inside the EE and
their dependencies. In the case of reification of mobile agents, the role of the reflective part of the
agents is also established. Thus, a reflective mobile agent EE has to:

– Reify internal aspects of the EE and of agents;
– Allow the manipulation of the reified information;
– Allow separation of concerns of orthogonal aspect in mobile agents.

The architecture of such a REE consists of two levels: the base-level and the meta-level. The
first level is composed of components that handle the execution of base-level agents, whereas the
second level supports the execution of meta-agents and the manipulation of the reified information.
The base-level can be seen as a conventional mobile agent EE without any support for reflection,
which acts as a black-box (i.e., a closed environment that gives minimal and ad-hoc access to
internal details). The meta-level includes components that are related to the reified aspects of
both agents and the EE itself.

Fig. 2 illustrates the conceptual architecture of the REE. The different components in both
base- and meta-level are described in the following subsections.

3.1 Base-level of the REE

The base-level provides the basic functionalities of the EE. It consists of the following elements:



B
as

e-
le

ve
l

M
et

a-
le

ve
l

S
ec

u
ri

ty

Communication

Communication

Agents’ context

Agents’ Meta-level

Service repository

EE’s Meta-level

R
ef

le
ct

iv
e 

E
xe

cu
ti

o
n

 E
n

vi
ro

n
m

en
t Meta-agent

Composition

Resources

Loader

Reflective

Loader

Fig. 2. The architecture of the Reflective Execution Environment.

Communication: The communication element handles communications between base-level agents
and local services. It also supports communication with remote EEs or applications, i.e., it
provides external connectivity.

Loader: This component is responsible for retrieving the code of mobile agents. The loader is
connected to the external communication channel that receives agent code from remote EEs.
The loader is logically divided into two parts: the loader at the base-level and the reflective
loader at the meta-level. Both components are complementary, since the base-level loader is
responsible for loading mobile agents and new services, while the reflective one performs the
reification of the agent and associates the corresponding meta-agent (the reified information
is made accessible through meta-objects). The combination of both loading components allows
the creation of reflective mobile agents.

Agent context: This element is used to create the context in which the agent is executing and to
trigger the agent’s initialization. The context provides access to the different services available
in the EE.

Service repository: Local services, which may be accessed by mobile agents running in the EE,
are stored in the service repository. Agents may trigger the installation of new services, which
are loaded dynamically. The loader handles the loading and linking of services.

Security: The security component has to mediate the external communication with remote EEs
or applications, as well as to enforce security policies during the loading of agent code. For
example, this component may ensure that agents are loaded from a trusted remote EE or
application, and verify that agents do not refer to forbidden objects or services (such as
internals of the EE).

3.2 Meta-level of the REE

At the meta-level internal aspects of the EE are reified, i.e., the EE exhibits internal components
to be manipulated at the meta-level. The meta-level is populated by meta-agents, which form
the reflective part of mobile agents executing in the base-level. From a logical point of view, the
combination of a base-level agent and its associated meta-agent may be considered a reflective
mobile agent, which is able to think and act upon itself, to access its internal representation (code
and state), and to change its behavior. Meta-agents are located at the meta-level and manipulate
the reified information (about the EE internals and about the base-level agent) in order to adapt
the base-agent. Meta-agents are located in the Agents’ meta-level, and the reified internals of
the EE reside in the EE’s meta-level (see Fig. 2).



Reification of EE Internals The REE is a white-box, which allows its internals to be reified. This
architecture is based on multi-model reflection, which allows the separation of concerns at the meta-
level itself [16]. Considering the specificity of the mobile agent paradigm, three aspects have been
identified that are necessary to provide openness in the REE: composition, communication,
and resources:

Composition: The composition of different elements in the system is reified in order to expose
the interconnections of base-level elements. For instance, this allows to inspect the binding
of communication facilities to network interfaces, or to discover all services that employ the
communication component.

Communication: The communications between different elements of the EE are reified in order
to provide an entry point for the introduction of filters, to account for messages exchanged,
or to redirect communication messages in the EE. Communication with local services are of
particular interest and are closely related to the reification of agents.

Resources: Resources are reified in the REE. Physical resources (CPU, memory, network band-
width, etc.) have abstract representations, since it is difficult to map low-level resources that
are typically dependent on the underlying operating system. Logical resources (such as threads,
agents, etc.) are also reified. The representation of reified logical resources allows to manipulate
and to modify the way the EE allocates those resources (e.g., enforcing resource limits).

Similar architectures have been proposed in the context of reflective middleware [5, 9], which
provide hooks to add new behavior to the environment. In the case of mobile agents, this aspect
is not necessary, since the agents themselves provide such functionality.

Reification of Mobile Agents The REE allows mobile agents to be reified when they arrive.
For each base-level agent, the REE associates a meta-agent, which is able to manipulate the reified
information of the base-level agent. The reification of the agent is a process that takes an agent
as input, reifies internal aspects of the agent, and binds the agent to a meta-agent. All these
adaptations transform the agent into a new reflective mobile agent as shown in Fig. 3.

The meta-agents are compositions of several meta-objects that are related to the different
reified aspects of the base-level agent. Similarly as for the EE, we have identified three aspects
of the base-level agent that are reified: structure, bindings, and resources. The associated
meta-objects play the role of micro-managers of the base-level agent. The separation of the meta-
agent into domain-specific meta-objects allows to simplify the modification and composition of
the different aspects handled at the meta-level.

Agent

Resources

Bindings

Structure

Reification

Meta-Agent

meta-object

Agent

Fig. 3. Reification of mobile agents.

Structural representation of the agent: The structural representation allows the meta-agent
to adapt the base-level agent using the information about composition, communication, and
resources, which is exposed by the REE. The reified agent structure allows to write special



code to modify this structure. Structural reification involves a high-level representation of the
agent code, which can be easily manipulated.

Bindings to services and other agents: On arrival, the base-level agent has unresolved ref-
erences to other agents or services. By reifying these bindings, the meta-agent can adapt the
interactions of the agent. The meta-agent may collect information about agent bindings and
use it for optimizations, for accounting, to apply particular communication policies, and for
debugging.

Resources consumed by the agent: The reification of the resources consumed by an agent
exposes the agent’s resource consumption to the meta-agent, which may use this information
for monitoring, to enforce resource limits, or for billing purpose.

The reified aspects of the EE and of agents are closely related. However, the manipulations
supported at the agents’ meta-level are more flexible than those in the EE itself. The information
associated with the reification in the EE’s meta-level is useful for the adaptation in the agents’
meta-level. Only in a restricted number of cases, modifications are performed in the EE’s meta-
level, because the components of the EE are rather static when compared to the dynamic nature
of mobile agents.

The reification and adaptations applied in a REE are transparent to the agent programmer,
who does not need to consider the non-functional aspects, which are incorporated just before the
agent starts executing, i.e. at load-time.

One disadvantage of load-time reification is the overhead caused by the reification process.
For the reification of structure and bindings, the overhead is rather small, because the necessary
information can be obtained without complex processing. However, resource reification may cause
considerable overhead. We have studied these aspects in a concrete implementation and evaluated
the overhead of resource reification, focusing on CPU and memory. Our results, which are presented
in section 5, show that sophisticated implementation techniques keep the overhead due to resource
reification reasonably small.

4 Reification of Resources

For agent resource reification, we analyze and modify the agent code in order to extract informa-
tion related to resource consumption and to insert the meta-objects that collect and maintain this
information. Modification of source code is a common practice in some reflective systems, since
it allows to manipulate and adapt applications [18]. In a mobile agent context load-time transfor-
mation based on the (compiled) agent code is better adapted, because it does not depend on the
source code of agents (which usually is not available) and enables the necessary modifications to
be applied before an agent starts executing. The REE allows reification and adaptation directly
on agent arrival, avoiding the need to implement different versions of the agent for distinct EEs.
The reification process is performed using special adaptation code (agent modifiers) that can be
dynamically inserted into the REE. Using mobile code for the reification process itself further
increases the flexibility of the model. As illustrated in Fig. 4, it is possible that an agent visits
EEs that do not support any adaptations.

To illustrate the reification of resources in the REE, let us consider Java as the target language,
because it is the common implementation language for mobile agent systems. Moreover, Java offers
many features that ease the implementation of our REE, such as e.g. object-orientation, language
safety, multi-threading, a portable code format (bytecode), as well as the support for dynamic and
customized class-loading, which enables sophisticated adaptation of agent classes before they are
loaded and linked by the JVM.

Recently, we have observed an increasing interest in applying reflection to Java-based envi-
ronments. Frameworks such as Javassist [8] allow structural reflection of Java programs. Javassist
reifies the whole structural representation of an application directly from the bytecode and allows
the modification of the application structure at load-time, hiding the low-level aspects of bytecode
manipulation.



Execution Environment

EE

EE

REE
REE

Mobile Agent

Execution Environment
Reflective

Application/
Management station

Agent modifier (adaptor)

Meta-Agent

Fig. 4. Overview of adaptations in REEs.

Our approach is based on rewriting of Java bytecode, because it enables a fully portable solution
that does not rely on any low-level operating system functionalities. In the following subsections
we briefly explain some basic ideas for resource reification in Java environments. More details can
be found in [4].

Reification of Network Bandwidth For the reification of network bandwidth, a straightfor-
ward solution consists in redirecting the calls to the component that provides the network service
and associating a meta-object to this call (see Fig. 5). This is done by before/after processing of
the method call and by trapping of well-known methods. The network resource is reified by an
object that maintains information on consumption, thresholds, etc. This solution exposes e.g. the
network traffic caused by an agent, and it allows to set limits or to add some filtering of network
messages at the meta-level. The necessary modifications at the bytecode level are rather simple,
because method invocations are explicit in the agent code.

The original agent’s bytecode
Modified agent with reified net bandwidth

NetworkServiceNetworkService

���������	��
�����

Meta-agent

Agent Agent

Fig. 5. Reification of network bandwidth.

Reification of Memory Memory reification is more complex, since it requires accounting of all
object allocations. The difficulty comes from the fact that it is no longer sufficient to redirect a
call to a given service. We have to modify the way objects are allocated and deallocated in the EE.
Another difficulty is to accurately estimate the size of allocated objects and the size of agent code.
We have to calculate an estimation of the size of objects that the agent creates and to provide



wrappers for the construction of these objects. This also requires forcing the agent to use the
wrappers.

Our approach consist in dynamically adding our own version of object allocator to the agent
code and replacing all object allocation instructions and invocations of constructors with our reified
version (see Fig. 6). The memory reification process is supported by agent modifier code, which
is retrieved from a remote node and performs the adaptation of agent. This allows to implement
different allocation strategies without having to hard-code the actual reification in the EE.

Object deallocation is also difficult to account for when memory is garbage collected, as in
Java, because there are no explicit application-level operations that could be easily tracked to this
end. Details can be found in [4].

� ���������
	 ���� �Meta-agent

Modified agent with reified memory

�������������������

The original agent’s bytecode

Agent
Agent

Fig. 6. Reification of memory.

Reification of CPU CPU is probably the most difficult resource to be reified, because it is not
explicitly ‘visible’ as a method invocation or an object allocation. Most operating systems provide
some means for CPU control that may be exploited by an agent EE. However, such a solution
limits portability and therefore should not be applied as a general-purpose solution in the context
of a mobile agent system. Consequently, the REE provides some means in order to reify the CPU
resource directly from the agents’ code. We introduce an abstract unit of measurement based on
the number of bytecode instructions executed by an agent. The reified CPU resource is associated
with a meta-object that monitors the CPU consumption of all threads of an agent.

On a JVM using Just-in-Time compilation, this approach only gives an estimation of the actual
CPU consumption. Nevertheless, an approximation is sufficient for many purposes, such as for the
prevention of denial-of-service attacks. On a JVM implemented in hardware, like recently emerging
Java processors that offer competitive performance and low power consumption, accounting the
number of executed bytecode instructions gives a precise information on the actual CPU usage.
Furthermore, as such processors will be integrated in mobile devices, where preservation of battery
power is of paramount importance, the information on CPU consumption may be used to estimate
and limit the power consumption of mobile agents.

In our approach the bytecode of an agent is analyzed in order to build control-flow graphs of
the agent’s methods (see Fig. 7). The resulting graphs are used to insert accounting instructions
at strategic places into the bytecode. Thus, the reified accounting information is updated while
the agent is executing. At the meta-level this information may be used to implement dedicated
scheduling algorithms, which may e.g. reduce the priority of threads of an agent, if it exceeds its
CPU limit.



���������
	��	����

Graph for accounting insertion

Meta-agent

Modified agent with reified CPU

The original agent’s bytecode

Agent

Agent

Fig. 7. Reification of CPU.

5 Evaluation

We have implemented a tool based on bytecode rewriting techniques, which transforms Java classes
in order to reify resource consumption. While our transformations for memory accounting are
related to techniques used by JRes [10], a similar approach for CPU accounting in Java has not
been used before. Our current implementation supports off-line transformations of arbitrary Java
classes (including JDK classes).

We are also integrating resource reification and appropriate control mechanisms into the J-
SEAL2 mobile agent kernel [3], which requires load-time rewriting of mobile objects. J-SEAL2 is
a secure mobile agent system implemented in pure Java, which supports the hierarchical process
model of the Seal Calculus [22] that was first implemented by the JavaSeal mobile agent system [7].
Resource reification in J-SEAL2 concerns only memory and CPU resources, since the J-SEAL2
design already supports network accounting and the integrating of application-specific security
policies.

In this section we present performance measurements showing that the overhead due to our
completely portable implementation of CPU and memory accounting is acceptable on modern JVM
implementations. We are not measuring the overhead incurred by the utilization of the reified
information3. Our goal is to show that resource reification causes only moderate overhead and
opens up interesting possibilities to improve flexibility and adaptability by allowing the application
to use the reified information.

Our bytecode rewriting tool is based on BCEL (Byte Code Engineering Library) [11], which
allows bytecode manipulations of Java classes and is also entirely written in Java. We chose BCEL
since it is one of the most mature bytecode instrumentation frameworks and provides a powerful
and intuitive API that is well adapted for our requirements.

To show that our approach may be applied to complex Java applications (and also because
there is a lack of standard benchmarks for mobile agent applications), we measured the standard
SPEC JVM98 benchmarks [19] on a Linux platform (Intel Pentium III, 733MHz clock rate, 128MB
RAM, Linux kernel 2.2.16) with IBM’s JDK 1.3 implementation, which includes one of the best
Just-in-Time compilers available today. We measured the overhead due to CPU and memory
accounting in three different configurations4:

– Unmodified benchmarks.
– Rewritten benchmarks for CPU reification.
– Rewritten benchmarks for memory reification.

3 E.g. for CPU control, the overhead caused by a dedicated scheduler that uses the reified information
can be kept small by choosing an appropriate time-slice.

4 The JDK was not rewritten for the measurements presented in this paper. See [4] for an evaluation of
the performance impact of JDK rewriting.



For each measurement, table 1 shows the execution times of the benchmarks in seconds
(rounded to 3 decimal places), as well as the speedup of the original code compared to the rewrit-
ten version (rounded to 2 decimal places). In order to minimize the impact of compilation and
garbage collection, all results represent the median of 101 different measurements. Furthermore,
we also computed the geometric mean for each configuration. We rewrote about 520 Java class-files
for the CPU and memory-aware versions of the SPEC JVM98 benchmarks.

Table 1. Benchmarks measuring the overhead of CPU and memory accounting (time in seconds).

Benchmark Unmodified CPU reified Mem reified

227 mtrt 5,823 (1,00) 7,336 (1,26) 6,898 (1,18)
202 jess 7,779 (1,00) 9,145 (1,18) 8,608 (1,11)
201 compress 19,130 (1,00) 23,156 (1,21) 19,500 (1,02)
209 db 26,740 (1,00) 27,777 (1,04) 27,031 (1,01)
222 mpegaudio 8,694 (1,00) 12,425 (1,43) 10,358 (1,19)
228 jack 8,184 (1,00) 8,771 (1,07) 9,226 (1,13)
213 javac 14,150 (1,00) 15,618 (1,10) 16,016 (1,13)

Geometric Mean 11,286 (1,00) 13,296 (1,18) 12,508 (1,11)

The results in table 1 show that the overhead due to CPU accounting is about 20%, while in the
case of memory accounting the observed overhead is only about 10%. Note that we did not apply
any optimizations to reduce the accounting overhead. Simple optimization rules, as discussed in [4],
can help to reduce the overhead significantly. The implementation of the optimization algorithm
is still in progress.

6 Conclusion

In this paper we have presented the architecture of a reflective mobile agent EE supporting the
reification of agents and of internal aspects of the EE itself. The reflective EE allows to manipulate
information on resource consumption. We suggest an implementation scheme for Java, which is
entirely portable and entails only moderate overhead. Moreover, our approach is not restricted to
mobile agent applications, but opens up the perspective of building portable resource management
policies as dynamic add-on modules for commercial off-the-shelf components.

Acknowledgments

Many thanks to Jarle Hulaas and Klaus Rapf for their valuable comments, and to Rory Vidal for
his work on CPU reification. This work was financed by the Swiss National Foundation, grants
5003-057753 and 20-54014.98, and by CoCo Software Engineering GmbH.

References

[1] G. Back, W. Hsieh, and J. Lepreau. Processes in KaffeOS: Isolation, resource management, and
sharing in Java. In Proceedings of the Fourth Symposium on Operating Systems Design and Imple-
mentation (OSDI’2000), San Diego, CA, USA, Oct. 2000.

[2] J. Baumann. Control Algorithms for Mobile Agents. PhD thesis, University of Stuttgart, Germany,
1999.

[3] W. Binder. Design and implementation of the J-SEAL2 mobile agent kernel. In The 2001 Symposium
on Applications and the Internet (SAINT-2001), San Diego, CA, USA, Jan. 2001.

[4] W. Binder, J. Hulaas, A. Villazón, and R. Vidal. Portable resource control in Java: The J-SEAL2 ap-
proach. In ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’01), Tampa Bay, Florida, USA, Oct. 2001.



[5] G. Blair, G. Coulson, P. Robin, and M. Papathomas. An Architecture for Next Generation Mid-
dleware. In N. Davies, K. Raymond, and J. Seitz, editors, IFIP International Conference on Dis-
tributed Systems Platforms and Open Distributed Processing (Middleware’98), Lake District, UK,
1998. Springer-Verlag.

[6] J. Bredin, D. Kotz, and D. Rus. Market-based resource control for mobile agents. In Second Inter-
national Conference on Autonomous Agents, Minneapolis,USA, May 1998.

[7] C. Bryce and J. Vitek. The JavaSeal mobile agent kernel. In First International Symposium on Agent
Systems and Applications (ASA’99)/Third International Symposium on Mobile Agents (MA’99),
Palm Springs, CA, USA, Oct. 1999.

[8] S. Chiba. Load-time structural reflection in Java. In ECOOP, pages 313–336, 2000.
[9] M. F. Costa, H. Duran, N. Parlavantzas, K. Saikoski, G. Blair, and G. Coulson. The Role of Reflective

Middleware in Supporing the Engineering of Complex Applications. In W. Cazzola, R. Stroud, and
F. Tisato, editors, OOPSLA ’99, Workshop on Object-Oriented Reflection and Software Engineering,
Denver, Colorado, USA, Nov. 1999.

[10] G. Czajkowski and T. von Eicken. JRes: A resource accounting interface for Java. In OOPSLA-98,
pages 21–35, New York, USA, Oct. 18–22 1998. ACM Press.

[11] M. Dahm. Byte code engineering. In Java-Information-Tage 1999 (JIT’99), Sept. 1999. http:

//bcel.sourceforge.net/.
[12] J. Gosling, B. Joy, and G. L. Steele. The Java Language Specification. The Java Series. Addison-

Wesley, Reading, MA, USA, 1996.
[13] T. Ledoux and N. Bouraqadi-Saâdani. Adaptability in mobile agent systems using reflection. In

ECOOP 2000, Workshop on Reflection and Metalevel Architectures, Cannes, France, 2000.
[14] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley, Reading, MA,

USA, second edition, 1999.
[15] P. Maes. Concepts and experiments in computation reflection. In ACM Conference on Object-

Oriented Programming Systems, Languages, and Applications (OOPSLA’87), Orlando, Florida, USA,
Oct. 1987.

[16] H. Okamura, Y. Ishikawa, and M. Tokoro. AL-1/D: A distributed programming sysyem with multi-
model reflection framework. In Workshop on New Models for Software Architecture, Nov. 1992.

[17] N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A. Hill, R. Jeffers, T. S. Mitrovich, B. R.
Pouliot, and D. S. Smith. NOMADS: toward a strong and safe mobile agent system. In C. Sierra,
G. Maria, and J. S. Rosenschein, editors, Proceedings of the 4th International Conference on Au-
tonomous Agents (AGENTS-00), pages 163–164, NY, June 3–7 2000. ACM Press.

[18] M. Tatsubori. An Extension Mechanism for the Java Language. Master’s thesis, Graduate School of
Engineering, University of Tsukuba, Ibaraki, Japan, Feb. 1999.

[19] The Standard Performance Evaluation Corporation. SPEC JVM98 Benchmarks. Web pages at
http://www.spec.org/osg/jvm98/, 1998.

[20] C. F. Tschudin. Funny money arbitrage for mobile code. In Proceedings of the Second Dartmouth
Workshop on Transportable Agents, Sept. 1997.

[21] C. F. Tschudin. Open resource allocation for mobile code. In Proceedings of The First Workshop on
Mobile Agents, Berlin, Germany, Apr. 1997.

[22] J. Vitek and G. Castagna. Seal: A framework for secure mobile computations. In Internet Program-
ming Languages, 1999.

[23] T. Watanabe, A. Noriki, and K. Shinbori. A Reflective Framework for Reliable Mobile Agent. In
ECOOP 2000, Workshop on Reflection and Metalevel Architectures, Cannes, France, 2000.

[24] I. Welch and R. Stroud. Kava - A Reflective Java Based on Bytecode Rewriting. In W. Caz-
zola, R. Stroud, and F. Tisato, editors, Reflection and Software Engineering, LNCS, pages 155–167.
Springer Verlag, 2000.

[25] I. Welch and R. J. Stroud. Using reflection as a mechanism for enforcing security policies in mobile
code. In ESORICS, pages 309–323, 2000.

http://bcel.sourceforge.net/
http://bcel.sourceforge.net/
http://www.spec.org/osg/jvm98/

	Portable Resource Reification inJava-based Mobile Agent Systems

