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ABSTRACT. Monitoring of CPU consumption is a very basic requirement in many areas of soft-
ware. It is especially valuable in the frame of Internet applications, in support of specific aspects
such as security, reliability, and adaptability. This paper is set in the context of J-RAF2, a Java-
based framework exploiting bytecode rewriting techniques in order to guarantee the portability of
CPU-managed applications. We briefly recall this implementation technique and present an exam-
ple of CPU monitoring module to validate this new approach. Depending on the application,
resource management may involve simple low-level accounting of CPU usage, or higher-level
tools that collect accounting information from several sources in order to enforce sophisticated
strategies. This paper shows that CPU monitoring modules may be easily built to work on top of
classes rewritten with J-RAF2, and that they will be entirely portable across many kinds of Java
deployment technologies (standalone applications, applets, servlets).

Keywords: CPU monitoring, CPU control, Bytecode Rewriting, Java, Management Framework,
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1. INTRODUCTION

Resource monitoring i.e., accounting and controlling physical resources like CPU, memory, bandwidth is a prerequisite in many
platforms to increase security and reliability, e.g., to avoid denial-of-service attacks [1]. Context-awareness is another benefit
that can be gained from a better understanding of resource control. Run time profiling of applications is crucial in server envi-
ronments in order to protect the host from malicious or badly programmed code. Java [2] and the Java Virtual Machine (JVM)
[3] are being increasingly used as the programming language and deployment platform for such server systems as Java 2 En-
terprise Edition, Servlets, Java Server Pages and Enterprise Java Beans. However, the Java language and standard Java runtime
systems currently lack mechanisms for resource management that could be used to limit the resource consumption of hosted
applications or to charge the clients for their resource consumption. Thus, the use of Java helps building extensible systems, but
conversely Java lags the necessary support of resource control.

In this paper we concentrate on the CPU resource [6]. Its monitoring is probably the most challenging of all resource kinds, due
to the specificity that we cannot identify explicit CPU consumption places in the code. Indeed, to the opposite of other resources,
it is rather considered continuous, i.e., to the opposite of memory that is explicitly always allocated. For that reason, it would
be extremely valuable to be able to properly manage CPU consumption, especially if we consider the broad families of Internet
applications that exist such as utility computing, web services, grid computing, embedded systems, and mobile object (mobile
agent) systems [5] that can be extended and customized by mobile code. Moreover, implementing agent-oriented, context-aware
software entities needs the realization of notions of self-organization and self-healing.
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This article is set in the context of a Java-based portable CPU management framework called J-RAF2 (Java Resource Account-
ing Framework, 2nd edition, http://www.jraf2.org). It proposes a CPU monitoring architecture that can be used by engineers
who need to manage resources to monitor and control CPU resources and by developers to manage the CPU consumption. The
framework allows to implement new resource monitors using the provided adaptable and extensible mechanism.

This article is structured as follows: In the next section we explain the design goals of our approach for rewriting bytecode in
support of CPU accounting. In Section 3 we illustrate some monitoring techniques that allow to manage CPU resource con-
sumption. In Section 4 we continue exploring the management capabilities through graphical monitoring of applications. Then
in Section 5, we discuss our solutions from the monitoring and management point of view. Finally, in Section 6 we present re-
lated work, and we conclude in Section 7.

2. CPU ACCOUNTING

In order to explain our CPU-management structure, we first briefly sketch our approach of bytecode rewriting. In J-RAF2 each
thread, along its life time, accounts for its own CPU consumption into an associated account. The accounting is done by keeping
track of the number of executed JVM bytecode instructions. Periodically, each thread aggregates its own consumption within
an account that is shared with a number of other threads. This approach is called self-accounting. Interleaved with this account-
ing, the thread also executes management and monitoring code, e.g., to ensure that a given resource quota is not exceeded. In
this way, the CPU management of J-RAF2 does not rely on a dedicated supervisor thread, but on a distribution among all threads
in the system, thus effectively implementing a form of self-control.

2.1. Design goal to ensure portability
All current approaches somehow rely on the support of native, i.e., non-portable, code for their own implementation. Our frame-
work, in contrast, draws its portability from the combination of bytecode transformations and runtime libraries implemented in
pure Java (see Figure 1).

Figure 1. Monitoring using the portable Java CPU management framework.

This offers an important advantage over the other approaches, because it is independent of any particular JVM and underlying
operating system. It works with every standard Java runtime systems and may be integrated into existing server and mobile ob-
ject environments. 

Figure 1 depicts the layered 
architecture of J-RAF2 offering 
a sample CPU-monitoring
policy. 
All Java code, including the
JDK (except the subset that is 
implemented in native code) is 
made CPU manageable by 
bytecode transformations 
(a process symbolized by the 
round arrow flowing through 
the rewriting engine). 
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2.2. Bytecode Transformation Scheme
The two main goals of our bytecode transformation schemes are to ensure portability and performance. Portability is ensured
by following a strict adherence to the specification of the Java language and virtual machine, and performance by minimizing
the overhead due to the additional instructions inserted into the original classes. 

Each thread has its own ThreadCPUAccount, of which Table 1 summarizes a part of the API interface. When a new thread
object is initialized, the method getCurrentAccount() returns the associated ThreadCPUAccount. Then, each rewrit-
ten thread increments the consumption counter of its account with the number of bytecodes it intends to execute in the immediate
future (the corresponding accounting sequences having been inserted at load-time by the J-RAF2 rewriting tool). When the
counter has been incremented by a number of bytecodes equal to or greater than an adjustable limit, the accounting granularity,
the shared management operation takes place by invocation of the consume() method. Conditionals that check whether con-
sume() has to be invoked are inserted in the beginning of each method as well as in each loop [6]. Each ThreadCPUAc-
count refers to an implementation of CPUManager, the manager object, which is shared between all threads. The method
getManager() returns the current CPUManager, whereas setManager(CPUManager) changes it. If a thread invokes
setManager(CPUManager) on its own ThreadCPUAccount, the CPU consumption will be reported to its CPUMan-
ager, then the thread detaches from its CPUManager and attaches to the new CPUManager. 

2.3. Aggregating CPU Consumption
The CPUManager is to implements the actual CPU accounting and control strategies, e.g., custom scheduling schemes [7].
Table 2 shows the CPUManager interface. Its methods are invoked by the ThreadCPUAccount implementation, as depicted
in Figure 2. For performance reasons, the per-thread accounting objects have a fixed structure, since they have to perfectly
match the characteristics of bytecode rewritten by our tool. When a thread invokes consume() on its ThreadCPUAccount,
this method in turn reports its collected CPU consumption to the CPUManager by calling consume(long). Inside the CPU-
Manager, it may simply aggregate the reported CPU consumption and write it to a monitor, or it may enforce absolute limits
and terminate threads or groups of threads that exceed their CPU limit, or it may limit the execution rate of threads, i.e., putting
threads temporarily to sleep if they exceed a given execution rate. This is possible without breaking security assumptions, since
the consume(long) invocation is synchronous, i.e., blocking, and executed by the thread to which the policy applies.

The getGranularity() method returns the accounting granularity currently defined for a ThreadCPUAccount associ-
ated with the given CPUManager. It is an adjustable value, which defines the frequency, and thus indirectly the overhead of
the management activities: it has to be adapted to the number of threads under supervision in order to prevent excessive delays
between invocations to consume(long). The methods attach(Thread t) and detach(Thread t) allow the man-
ager to assign and remove the associated ThreadCPUAccount.

Table 1: Part of the ThreadCPUAccount API. Table 2: The CPUManager interface.
public final class ThreadCPUAccount{

public static 
ThreadCPUAccount getCurrentAccount();

public int consumption;
private int granularity;
public void consume();

private CPUManager manager;
public CPUManager getManager();
public void setManager(CPUManager m);
...

}

public interface CPUManager {
public void consume(long c);
public int getGranularity();
public void attach(Thread t);
public void detach(Thread t);

}
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Figure 2. Overview of the CPU monitoring hierarchy.

3. MONITORING CPU RESOURCES

3.1. Managing Granularity 
To manage the granularity, developers could write a class GranularityManager as shown in Table 3. The variable gran-
ularity is volatile in order to ensure that the consume() method of ThreadCPUAccount always reads the up-to-date
value. The value is read by the threads that perform the consume() call (see Figure 2). 1 The method setGranulari-
ty(int g) allows the manager to adjust the granularity in order to adapt it to the number of monitored threads. And get-
Granularity() simply returns the actual value defined by the manager.

3.2. Managing Threads
Table 4 shows a simplified example of how the accounting information of multiple threads may be managed. The Thread-
CPUManager class extends GranularityManager and implements CPUManager. The manager maintains a map of ac-
tive threads in order to maintain the sum of all reported consumption information. It provides a specific implementation of the
consume(long) method. Note that the consume(long) simply calls the consume(Thread,long) method that is
synchronized, as multiple threads may invoke it concurrently. Same structure for the getConsumption() method that calls
the getConsumption(Thread) method. It also provides methods to attach and detach threads to/from the hashmap (at-
tach(Thread) and detach(Thread)). The use of weak references has the advantage that keys will automatically be re-
moved by the garbage collector when appropriate.

1. The CPUMonitor also has a thread, but the CPU monitoring code is not rewritten, so this thread does not make any call to the 
consume() method.
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3.3. Hierarchical structure of Managers
Like with ThreadCPUManager, the developer could define many different managers in a hierarchical structure. This allows
the developer to assign appropriate CPUManagers depending on the chosen management policy. The next sub-section shows
one example of the use of this inheritance structure to provide a CPUManager for a specific use.

3.4. Providing a CPUManager
When the JVM is first started, initial threads receive their dedicated ThreadCPUAccount objects without an associated
CPUManager. Only once the start-up (or bootstrapping) process is completed, a user-defined ManagerFactory may be
loaded (see Table 5), as specified by a system property. If a ManagerFactory is specified, such as e.g. the Moni-
torCPUAccounting (see Table 6), all threads collected during the bootstrapping phase become associated with one or sev-
eral CPUManagers designated by the ManagerFactory1. This approach allows the user to install CPUManagers without
modifying application classes by hand.

Table 3: The GranularityManager implementation Table 4: Part of the ThreadCPUManager implementation
public class GranularityManager {

protected static final int
MAX_GRANULARITY = ...;

protected volatile int granularity;

public GranularityManager() {
granularity = MAX_GRANULARITY;

}

public GranularityManager(int g) {
granularity = g;

}

public void setGranularity(int g) {
granularity = g;

}

public int getGranularity() {
return granularity;

}
}

public class ThreadCPUManager 
extends GranularityManager
implements CPUManager {

protected Map activeThreads = new WeakHashMap();
protected long totalConsumption = 0;

public void consume(long c) {
consume(Thread.currentThread(),c);

}

public synchronized void 
consume(Thread t, long c) {

Long C = (Long) activeThreads.get(t);
c += C.longValue();
activeThreads.put(t,new Long(c));

}

public long getConsumption() {
return getConsumption(Thread.currentThread());

}

public synchronized long getConsumption(Thread t) {
Long C = (Long)activeThreads.get(t);
return C.longValue();

}

public synchronized void attach(Thread t) {
activeThreads.put(t, new Long(0));

}

public synchronized void detach(Thread t) {
activeThreads.remove(t);

}
...

}

1. Identification and management of JVM internal daemon threads is made possible by the fact that, at some point of their execution, 
they execute rewritten user or JDK bytecode. In our approach, JVM internal daemon threads are identified as not having a parent 
ThreadGroup and so ignored.
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In the simplest case, the user-defined ManagerFactory may provide a single default CPUManager like the Monitor-
ManagerFactory implementation in Table 6. However, it may also inspect each thread passed as argument, as well as ex-
ploit other contextual information available at runtime, to help deciding which CPUManager shall be assigned. The
getManager(Thread) method return the CPUManager that is assigned to the ThreadCPUAccount. When a new
thread is created, it receives its own ThreadCPUAccount. If the creating thread has an associated CPUManager, the new
thread will inherit the same CPUManager. Otherwise, the ManagerFactory will be asked to provide an appropriate CPU-
Manager.

If a thread is not associated with a CPUManager, invocations of consume() on its ThreadCPUAccount will collect the
consumption internally within the ThreadCPUAccount. When the thread becomes associated with a CPUManager, all the
internally collected consumption will be reported to that CPUManager. The call setManager(null) may be used to dis-
connect a ThreadCPUAccount from any CPUManager.

The MonitorCPUAccounting class is an example that shows how to monitor the accounting information of multiple
threads (see Table 7). It extends ThreadCPUManager and implements CPUManager. More custom control policies could
be implemented in such a way, like the Isolate approach of Sun [8]. It provides, like ThreadCPUManager, a specific imple-
mentation of the consume(long) method. In this class, the monitor provides the communication with the graphical moni-
toring interface that has a user-defined layout, and allows to show some or all active threads. The graphical monitoring is
explained in the next section.

Table 5: The ManagerFactory interface. Table 6: The MonitorManagerFactory implementation.
public interface ManagerFactory {

CPUManager getManager(Thread t);
}

public final class MonitorManagerFactory
implements ManagerFactory {

private final CPUManager appManager =
new MonitorCPUAccounting();

public Object getManager(Thread t) {
ThreadGroup tg = t.getThreadGroup();
return (tg == null || tg.getParent() == null) ?

null :
appManager;

}

Table 7: The MonitorCPUAccounting
public class MonitorCPUAccounting extends ThreadCPUManager {
//graphical monitor instance
private CPUMonitor monitor;

public MonitorCPUAccounting(CPUMonitor monitor) {
...

}

public setMonitor(CPUMonitor monitor) {
this.monitor = monitor;

}

public synchronized void consume(long requestQuantity) {
super.consume(requestQuantity);
setConsumptionToMonitor(requestQuantity);

}

public void setConsumptionToMonitor(long requestQuantity) {
monitor.setConsumption(requestQuantity);

}
...

}
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In this simple case, consume() calls the consume() method of the ThreadCPUManager class and provides a new sam-
ple value to the graphical monitor through the setConsumptionToMonitor(long) method.

3.5. A model for CPU Monitoring
A model for the user-defined part of the CPU Monitoring is shown in the Figure 3. In this picture we distinguish the management
part in yellow (with the ThreadCPUAccount class and the hierarchical structure of the ManagerFactory), the monitoring
part in green (with the GranularityManager class and the hierarchical structure of the CPUManager), and finally the
manageable runtime part in pink (with the classes that are used by the graphical monitor CPUMonitor). 

Figure 3. The CPUMonitoring model

4. GRAPHICAL MONITORING

The CPUManager allows the implementation of user-defined control strategies, e.g., the MonitorCPUAccounting class
using the inheritance structure of CPUManagers. Moreover, programmers could plug customized graphical monitors showing
all or some threads consumption with different layouts. The layout of the graphical interface is independent of the Moni-
torCPUAccounting class that implements the management policies; it could however communicate with this class (e.g.,
based on input received through the GUI) to enforce active measures against a thread that consumes too much CPU power. Be-
cause both classes are user-defined, developers who want to extend this structure have a very flexible architecture that allows
more advanced interactions between these two classes.
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4.1. JRAF2 in action
In this section we show a simple graphical monitor interface that uses the APIs described in the previous section. An important
design guideline for us was to follow a minimalistic approach, while allowing programmers to add new features as needed. Fig-
ure 4 shows a screen shot of a graphical application that has been beforehand rewritten by the J-RAF2 tool. We chose the Java
2D Demo (http://java.sun.com/products/java-media/2D/samples/index.html) to demonstrate our approach on a general multi-
threaded application. In order to accurately monitor the CPU consumption, applications, libraries, and the Java Development
Kit (JDK) itself are transformed to expose details regarding the execution of threads. In this example, we aggregate the CPU
consumption of individual threads and display these values in the graphical monitor.

Figure 4. The Java 2D Demo processed by J-RAF2.
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4.2. Application with Appletviewer
To run the Java 2D Demo application inside Appletviewer, the user needs to specify two options to give enough permissions to
execute the accounting. These permissions are inserted into the file <jdk_home>\jre\lib\security\java.policy
by adding the lines of Table 8.

The first line is required to be able to identify and load a ManagerFactory, e.g., the MonitorManagerFactory class,
using the system property -Dorg.jraf2.cpu.ManagerFactory=org.jraf2.runtime.cpu.managers.Mon-
itorManagerFactory on the command line. The second line is necessary for the ManagerFactory to be allowed to test
if a given thread is a system thread or not, as required by the example of Table 6. Finally the user launches the “Java 2D Demo”
application, prepending the -J option before the system property definition mentioned above (see Figure 5).

Figure 5. The Java 2D Demo inside the Appletviewer

Table 8: System properties needed with the Appletviewer
permission java.util.PropertyPermission "org.jraf2.cpu.ManagerFactory", "read";
permission java.lang.RuntimePermission "modifyThreadGroup";
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4.3. Application with the Netscape browser
To run the Java 2D Demo application inside the Netscape browser, the user needs to specify an environment variable to specify
to the browser where to find a JVM with a JDK rewritten [4] with J-RAF2 (see Table 9). Then he needs to write a simple html

document with an applet tag calling our rewritten Java2Demo.jar application, here renamed rw_Java2Demo.jar (see Table 10).
Finally, in order to enable our accounting features, the user needs to specify in the Java Control Panel, under the Java tab, choos-
ing the option ‘Java Applet Runtime Settings’, the runtime parameter -Dorg.jraf2.cpu.ManagerFacto-
ry=org.jraf2.runtime.cpu.managers.MonitorManagerFactory (see Figure 6).

Figure 6. The Java Control Panel window

To view the application running inside the browser, launch Netscape on the simple html page defined above, like this:

netscape `pwd`/Java2Demo.html (see Figure 7)

Table 9: Environment variable needed for the Browser Table 10. Simple html document with an applet
setenv NPX_PLUGIN_PATH 

/users/camesi/jdk1.5.0/jre/plugin/sparc/ns4
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
  <head>
    <title>Java 2D(TM) Demo</title>
  </head>

  <body>
<appletcode=java2d.Java2DemoApplet.class 

archive=rw_Java2Demo.jar width=710 height=540>
</applet>

  </body>
</html>
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Figure 7. The Java 2D Demo inside the Netscape browser
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4.4. Application as a Servlet
The last deployment scenario demonstrated in this paper is a simple ‘helloworld’ executing as a monitored servlet inside Tomcat
version 5.5.0. The Servlet Engine needs some environment variables to start accounting the consumption (see Table 11). Note

that the option specifying the monitor is set in the CATALINA_OPTS environment variable. Then we may start a web browser
and call our servlet at a URL like ‘http://localhost:8080/servlets-examples/servlet/HelloWorldExample’, see Figure 8.

Figure 8. Accounting under Servlet

Table 9: Environment variable needed for Servlet
setenv CATALINA_HOME 

/users/camesi/jakarta-tomcat-5.5.0
setenv JAVA_HOME 

/users/camesi/jdk1.5.0
setenv CATALINA_OPTS 

-Dorg.jraf2.cpu.ManagerFactory=org.jraf2.runtime.cpu.managers.MonitorManagerFactory
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5. EVALUATION

Our proposal for CPU management and monitoring is built on the idea of self-accounting. We thus probably offer the most pre-
cise fine-grained accounting basis available with an extensible and adaptable layer architecture. Nevertheless, this approach is
not only intellectually attractive, but it also solves one important weakness of all existing solutions (see related work section)
based on a polling supervisor thread: The fact that the Java specification does not formally guarantee that the supervisor thread
will ever be scheduled, whatever its priority is set to. On the other hand, in J-RAF2, any resources consumed will be accounted
by the consuming thread itself (provided that the consuming code is implemented in Java, and not in some native language),
and, if required, the thread will eventually take self-correcting measures. Another interesting contribution of our approach is
the use of a portable, hardware-independent unit of measurement for CPU consumption: the number of executed bytecode in-
structions. Testing our architecture for accounting, monitoring and controlling the CPU resource consumption, we have ex-
plored the extension capabilities of our architecture and showed that the programmer is able to extend the hierarchical structure
to his needs. Due to the nature of our approach, native code execution can of course not be directly accounted. Another small
limitation of our J-RAF2 framework is that it needs to be used with Java version 2.0 or higher 1.

More sophisticated control strategies can be envisaged in different Internet applications. We could imagine a distributed graph-
ical monitoring system e.g. in grid computing, with the needs of accessing real-time CPU usage data and the ability to host for-
eign, installable applications. In this configuration, new code installation happens almost at each execution. Here, resource
management constitutes a building block for efficient load-balancing and therefore we expect graphical monitoring to be prof-
itable.

6. RELATED WORK

Prevailing approaches to provide resource control in Java-based platforms rely on a modified JVM, on native code libraries, or
on program transformations. For instance, the Aroma VM [9], KaffeOS [10], and the MVM [11] are specialized JVMs support-
ing resource control. JRes [12] is a resource control library for Java, which uses native code for CPU control and rewrites the
bytecode of Java programs for memory control. 

More recently, researchers at Sun have published a report relating their approach to incorporating resource management as an
integral part of the Java language [7]. They have embraced a very broad field of investigation, since their ambitions are e.g. to
care for physical as well as logical resources, and to provide direct support for sophisticated management policies with multi-
party decision taking and notification. On the other hand, J-RAF2 focuses on the lower-level facilities, while leaving a lot of
flexibility to developers. Several other management and runtime monitoring APIs have been offered by Sun along with the suc-
cessive releases of Java platforms, especially for heap memory, but currently no solution is applicable as widely across envi-
ronments, nor is also usable as basis for implementing control policies (as opposed to monitoring), nor is as well integrated with
the language as the present framework.

7. CONCLUSION

In this paper we have given an overview of J-RAF2, an extensible and adaptable resource management framework. Initially, it
was conceived to prevent denial-of-service attacks in mobile code environments, but is has become a general tool with different
management strategies on top of arbitrary rewritten Java applications. Completely built on automated program transformation
techniques applied at the bytecode level, it can be used with every standard JVM. This paper shows that developers are able to
extend our layered structure to manage the CPU consumption. By installing hierarchical structures of CPUManagers, they are
able to implement arbitrary strategies to supervise thread execution.

1. The principal reason of this choice is the use of the weak references in our approach. This is necessary to allow the GC (Garbage Col-
lector) to clean the thread references to threads that terminated their execution to ensure no intrusive behaviour to the original appli-
cation.
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