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Abstract

As an execution platform, the Java Virtual Machine
(JVM) provides many benefits in terms of portability and se-
curity. However, this advantage turns into an obstacle when
it comes to determining the computing resources (CPU,
memory) a program will require to run properly in a given
environment. In this paper, we build on the Java Resource
Accounting Framework, Second Edition (J-RAF2), to inves-
tigate the use of bytecode instruction counting (BIC) as an
estimation of real CPU consumption. We show that for all
of the tested platforms there is a stable, application-specific
ratio of bytecodes per unit of CPU time – the experimen-
tal bytecode rate (BRexp) – that can be used as a basis for
translating a BIC value into the corresponding CPU con-
sumption.

1. Introduction

The Java programming language [8] and the Java Vir-
tual Machine (JVM) [13] are a prominent programming
language and deployment platform. However, the lack of
mechanisms to predict, monitor, and limit the resource con-
sumption of programs (resource management) is a severe
limitation in many settings where Java is used nowadays,
such as application servers, web services, grid computing,
and embedded systems.

In previous work [3, 4, 12] we introduced a portable
bytecode instruction counting (BIC) scheme for Java, the
Java Resource Accounting Framework, Second Edition (J-
RAF2, http://www.jraf2.org). J-RAF2 relies on a platform-
independent dynamic metric, the number of executed JVM
bytecode instructions [6]. BIC can also be used as profil-
ing metric [2]. Profiles based on BIC are precise, platform-
independent, reproducible, directly comparable across dif-
ferent environments, and valuable to gain insight into algo-
rithm complexity.
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Computing CPU consumption is essential for software
development, and for monitoring and management of soft-
ware deployment. Nonetheless, BIC and CPU time are dis-
tinct metrics for different purposes. Currently, there are no
tools supporting this activity in a portable way throughout
heterogeneous computing environments. Hence, the study
of the relationship between BIC and CPU consumption is
crucial for its potential for estimating CPU consumption
based on static and portable analysis methods. The idea
followed here is to use profiles based on BIC (i.e. extend-
ing the J-RAF2 bytecode instrumentation) to estimate, as
accurately as possible, the CPU time of an application on a
particular target system.

The first contribution of this paper is the presentation of
a novel methodology for studying the relationship between
BIC and CPU consumption, based on a continuous profiling
system that has minimal influence on the executed system.
The fine-grained measurement methodology proposed here
combines bytecode instrumentation with hardware perfor-
mance counters, in order to improve the quality of results
(i.e., it is efficient and gives precise samples with low mea-
surement perturbation). On the opposite, we have found that
classical profiling tools for Java, based on the JVM Pro-
filer Interface (JVMPI) [17] result in enormous overhead,
hence a higher perturbation, and requires profiling agents
to be written in platform-dependent native code. Since our
methodology entirely relies on bytecode instrumentation, it
does not require any modification to whichever JVM is em-
ployed, and remains therefore applicable in very heteroge-
neous systems.

As a second contribution of this paper, we show experi-
mentally that for each platform there is a stable, application-
specific bytecode rate

BRexp = number of executed bytecode instructions
elapsed CPU time

that can be used for translating a BIC value into the cor-
responding CPU consumption. Our experiments show that
this stability will usually cover whole applications, but may
also sometimes be more local, depending on the specific
activities of each application. We demonstrate the relative



stability of BRexp, on the basis of the SPEC JVM98 and
SPEC JBB2005 benchmark suites, executed in several dif-
ferent environments. We also introduce a theoretical BR
(written BRth in the following), which corrects the influ-
ences due to our specific measurement methodology, in or-
der to evaluate the BR that an uninstrumented application
would yield, as well as to indirectly assess the validity of
the results of this paper.

This paper is structured as follows. Section 2 presents
some potential applications of BRexp. Section 3 explains
the approach of BIC to estimate CPU time consumption
in the context of J-RAF2. Section 4 presents results of
BRexp measurement in different environment using the
SPEC JVM98 and SPEC JBB2005 benchmarks. Section 5
introduces our notion of theoretical BR for assessing our
results. Section 6 presents the measurement optimizations
leading to the continuous BRexp. Section 7 discusses the
results obtained so far. Section 8 outlines related work. And
finally, Section 9 concludes this paper.

2. Applications of BRexp

The stability of BRexp revealed in this paper is a valu-
able property in many ways. First, it serves to better under-
stand the behaviour of JVMs and may provide foundations
for new kinds of optimizations. Second, it helps assessing
the value of BIC as a portable basis for estimating CPU con-
sumption.

We see two immediate approaches for exploiting the
stability of BRexp in practice. One possibility is to first
compute the BRexp offline (by benchmarking or profiling)
for a given program in a particular environment, and then
to use this value at production time to predict CPU time;
this requires one calibration for each platform and applica-
tion. The second possibility is to dynamically determine the
BRexp of a given program in a particular environment - the
continuous BRexp (CBRexp) - based on the hypothesis that
BRexp will always tend to become (at least locally) stable,
and then to use the knowledge of BRexp in various man-
agement tasks, like load-balancing or usage-based billing.

However, as a longer-term goal, new scenarios may be
envisaged using BIC as enabler, such as:
• cross-profiling, especially when developing for limited

devices: The developer could profile an application on
his preferred platform Pdevelop (typically a worksta-
tion), providing the profiler some configuration infor-
mation concerning the intended target platform Ptarget

(e.g. an embedded system). The profile obtained on
Pdevelop would allow the developer to approximate a
CPU time-based profile on Ptarget;

• performance prediction (sizing of resources, with lim-
ited over-provisioning);

• load balancing, with different applications in concur-
rency;

• resource awareness, when deploying applications
throughout heterogeneous computer systems.

3. Estimating CPU Time via BIC

Monitoring of server systems is important to quickly de-
tect performance problems and to tune the system depend-
ing on the workload. Moreover, resource management is a
prerequisite to prevent resource overuse in extensible mid-
dleware that allows hosting of foreign, untrusted, poten-
tially erroneous or malicious software components (preven-
tion of denial-of-service attacks).

Existing work has studied static and dynamic discrete
metrics related to the execution of Java bytecode [6, 7, 9].
Here we propose to extend this investigation with continu-
ous bytecode instruction counting and to study the correla-
tion between BIC and actual CPU consumption. In contrast
to related work which takes a low-level approach [11, 15,
20], here we attempt a top-down approach by considering
the entire execution platform, including the application and
the JVM, as a black box, and we try to characterize this
with a metric of bytecode execution rates. To this end, we
measured the number of executed bytecode instructions at
sufficiently frequent intervals, along with the elapsed CPU
time for each thread with a high level of precision, as de-
tailed below.

3.1. Bytecode Rewriting with J-RAF2

J-RAF2 uses a platform-independent dynamic metric,
the number of executed JVM bytecode instructions [6]. The
J-RAF2 BIC approach is based on the principle of bytecode
instrumentation. The bytecode of Java classes is rewrit-
ten in order to make the execution of bytecode sequences
explicit (in the present paper, BIC includes only the orig-
inal bytecode instructions, not counting the additional in-
strumentation code). At runtime, each thread continuously
maintains its own BIC, expressed as the number of executed
JVM bytecode instructions. Periodically, each thread ag-
gregates the collected information concerning its own exe-
cution within an account that may be shared with a num-
ber of other threads. During these information update rou-
tines, implemented in so-called CPU managers, the thread
will also execute management code, e.g., to ensure that a
given resource quota is not exceeded. J-RAF2 ensures that
threads invoke their custom CPU manager regularly, after
each execution of a given number of bytecode instructions,
the granularity, which is a dynamically adjustable value.
This scheme has the advantage of allowing the activation of
such update routines as frequently as wanted, independently
of the resolution of any predefined timers or schedulers. For
an application that is deterministic, these activations will
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Table 1: BRexp in JBB2005 (Sun JDK 1.5.0, Intel Pentium 2.6 GHz, Linux 2.6)
Mode Average Median Std. deviation % std. error

JBB2005 Xint 27 613 28 005 1 657 6.00%
JBB2005 client 395 073 395 316 25 483 6.45%
JBB2005 server 517 532 517 624 45 518 8.80%

Table 2: BRexp in JBB2005 (Sun JDK 1.5.0, Sun Sparc 1.5 GHz, Solaris 10)
Mode Average Median Std. deviation % std. error

JBB2005 Xint 24 273 24 436 1 674 6.90%
JBB2005 client 421 648 423 074 19 287 4.57%
JBB2005 server 591 893 594 347 44 122 7.12%

also happen in a deterministic and hence reproducible se-
quence.

Our approach allows to measure BRexp in a portable
way, applicable to any JVM. The advantage of avoiding
any modifications to the JVM is that we are able to eas-
ily collect the BRexp of a given instrumented application
on many different combinations of hardware, OS and JVM.
We use J-RAF2 bytecode instrumentation in order to mea-
sure the CPU time consumed by Java code. More precisely,
we repeatedly compute the (per-thread) CPU time elapsed
between each time the instrumented Java code invokes the
information update routines and subtract the time spent in-
side the routines themselves. Hence, we can obtain the CPU
time for a particular application on any given system.

3.2. Benchmarking Setup

For all our tests, the benchmarking was performed with
the SPEC JVM98 benchmark suites [19] and the SPEC
JBB2005 benchmark [18]. Both the benchmark code and
the runtime libraries, i.e the JDK, were rewritten fol-
lowing our simple, unoptimized bytecode transformation
schemes [12]. For SPEC JVM98, we used the standard in-
put size of 100, but our experiments revealed that changing
the input size has minimal effect on the results presented
here.

We ran the benchmarks on a Linux Fedora Core 2 com-
puter (Intel Pentium 4 CPU at 2.6 GHz, 512 MB RAM) and
on a Sun Solaris 10 workstation (Sun Blade 1500 with an
UltraSparc IIIi CPU at 1.5 GHz, 1024 MB RAM). These
measurements were made with the Sun JDK 1.5.0 plat-
form in its different execution modes, i.e., using the Xint
command-line option for selecting a purely interpretative
mode, and the client or server options for a delayed
just-in-time compilation (JIT), respectively a more inten-
sive load-time compilation. We also executed the tests with
IBM JDK 1.4.2 on the above mentioned Linux machine,
and the main results were quite comparable to the ones ob-
tained with the Sun JDK, therefore we do not present them
in this paper.

3.3. Using Hardware Performance Counters

The objective of determining the CPU consumption for
Java bytecodes is difficult because of the level of precision
that is required: the time taken to execute any single byte-
code on recent hardware is usually far below the measure-
ment resolution offered by the JVM or by the OS itself.
Another difficulty is that the desired timings are specific to
each {JVM, OS, hardware} platform combination.

We exploit the added precision provided by processor
cycle counters, as found in hardware performance counter
(HPC) enabled processors (such as the Intel Pentium 4 and
Sun Ultrasparc CPUs), since standard Java APIs – even the
Java 1.5 System.nanoTime()method – do not in prac-
tice provide the required level of resolution. In previous ex-
periments, we used standard APIs (notably the JVMPI [17]
profiling API) for measuring elapsed per-thread CPU time,
but the inherent lack of resolution resulted in important
measurement perturbations, hence noticeably worse sam-
pling distributions than achieved here, especially in multi-
threaded applications. We estimate that the resolution in-
creased approximately from 10 milliseconds up to 1.5 mi-
croseconds on our Intel Pentium machine with the adoption
of a HPC-based library.

We used PCL (the Performance Counter Library) [1],
which is a lightweight portable HPC library with C, C++,
Fortran and Java APIs. This library enables our CPU time
computation scheme to become portable across a wide va-
riety of operating systems and architectures.

4. BRexp in Standard Benchmark Suites

On the basis of the sampled {BIC, cpu time} couples,
we computed the instant values of BRexp. Then, for each
test, we calculated the average (i.e. arithmetic mean), the
median, the standard deviation and the percentage standard
error (i.e. the standard deviation expressed as a percentage
of the average) of the collected BRexp.

Table 1 shows the results for SPEC JBB2005 in different
JVM execution modes on our Linux machine. We recon-
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Table 3: BRexp in JVM98 (Sun JDK 1.5.0 in Xint mode, Intel Pentium 2.6 GHz, Linux 2.6)
Average Median Std. deviation % std. error

201 compress 54 225 53 918 2 012 3.71%
202 jess 25 970 25 887 1 579 6.08%
209 db 30 586 31 392 3 806 12.44%
213 javac 27 822 28 593 1 932 6.94%
222 mpegaudio 76 432 75 907 2 853 3.73%
227 mtrt 19 207 18 923 1 922 10.01%
228 jack 22 440 22 501 781 3.48%

Table 4: BRexp in JVM98 (Sun JDK 1.5.0 in client mode, Intel Pentium 2.6 GHz, Linux 2.6)
Average Median Std. deviation % std. error

201 compress 1 146 590 1 145 674 124 275 10.84%
202 jess 623 211 607 167 107 858 17.31%
209 db 194 540 122 619 171 637 88.23%
213 javac 395 946 413 049 110 746 27.97%
222 mpegaudio 1 608 147 1 620 712 88 212 5.49%
227 mtrt 673 549 684 004 88 131 13.08%
228 jack 245 388 175 241 137 460 56.02%

ducted the JBB2005 benchmark test on our Sun Sparc ma-
chine, with the results shown in Table 1. We observe that
BRexp remains linewise fairly stable, i.e., the standard er-
ror is low in all execution modes and environments. The
samples are also well centered, which is testified by the fact
that the average and median of each test remain quite close
to each other. The goal of SPEC JBB2005 (Java Business
Benchmark) is to evaluate the performance of server-side
Java implementations by emulating a three-tier client/server
system. It is designed to reflect the most common types of
server-side Java applications, by exercising the implemen-
tations of the JVM, Just-In-Time (JIT) compiler, garbage
collection (GC), threads and some aspects of the operating
system [18]. Based on this description, we may infer that
this benchmark implements a fairly varied set of activities,
and that the statistical characteristics of the collected sam-
ples, especially the stability of BRexp are representative of
many real-world applications. In the following we verify
whether SPEC JVM98 confirms this tendency of applica-
tions to yield a constant BRexp throughout their execution.

SPEC JVM98 [19] is a well-known general-purpose
benchmark suite, which consists of the following Java pro-
grams:

• compress: a popular utility used to com-
press/uncompress files;

• jess: a Java expert system shell;
• db: a small data management program;
• javac: an old Java compiler, compiling 225,000 lines

of code;
• mpegaudio: an MP3 audio stream decoder;
• mtrt: a dual-threaded program that ray traces an image

file;
• jack: a parser generator with lexical analysis;

Tables 3 and 4 list the results obtained with SPEC
JVM98 run in Xint, respectively in client mode on
our Linux machine. We observe that in this benchmark
each application has specific BRexp properties. We at-
tribute this to the fact that each of these applications con-
sists of highly specialized internal activities. We appreciate
that 201 compress and 222 mpegaudio exhibit the lowest
percentage standard errors, as well as the highest average
BRexp; this is certainly because these applications execute
bytecodes that are rather simple (i.e., inexpensive in terms
of required CPU time) and repetitive (i.e., with strong code
and data locality). However, it is important to realize that
the BRexp values available here must be weighted by the
overhead due to our bytecode instrumentation scheme. This
issue will be addressed in the next section.

Focusing more on the very bytecodes that constitute each
application, it seems rather obvious that the variation of in-
stant BRexp values, expressed as the percentage standard
error, depends at least partly on the difference of costs of
the bytecodes involved: if an application contains a rela-
tively homogeneous set of bytecodes, the percentage stan-
dard error will tend to be lower. Other factors of variation
are the execution of GC, JIT, and native code (as part of
the JVM itself, or of the JDK, or finally as the result of dy-
namic compilation). As confirmed by comparing Tables 3
and 4, the JIT itself, as well as the mixture of interpreted
and compiled bytecodes in the same execution will increase
the percentage standard error.

The higher percentage standard error in 228 jack (Ta-
ble 4) is caused by an intensive workload during initial-
ization of the program and certainly also by the fact that
this application is known to be particularly exception in-
tensive [5][14] (i.e. exception management causes an addi-
tional workload in the VM, which in turn reduces BRexp).
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Figure 1: Samples taken during a run of 201 compress on
our Linux machine, server mode.

For 209 db, we attribute the high percentage standard er-
ror to its unoptimized use of memory, since it spends most
of the time sorting its internal database using a simple al-
gorithm that ignores data locality, which results in serious
thrashing of the underlying hardware memory management
system [16]. It is striking that SPEC JVM98 was initially
constituted exclusively of real-world applications, except
for 209 db, which is a synthetic benchmark.

In server mode, both BRexp average and standard
error values are somewhat higher in comparison to the
client mode. This seems natural, because in server
mode, the JIT behaves more aggressively. Similar results
were found with the IBM virtual machine on our Linux ma-
chine.

For an example illustrating the samples taken, see Fig-
ure 1, which exhibits the raw results in the case of
the 201 compress benchmark on our Linux machine in
server mode. Figure 2 shows - for the same run - the
evolution of the average and standard deviation of BRexp,
obtained simply by recalculating the statistics for each new
sample since the beginning of the execution. For obvious
performance and non-perturbation purposes, this computa-
tion was actually done offline on the samples collected dur-
ing execution.

5. Determination of a Theoretical BR

An interesting point to be addressed in our approach
is the study of the influence of our instrumentation on
the BRexp measurement and the possibility to estimate
as precisely as possible the theoretical BR (i.e. the
BR that each application would consume in its non-
instrumented version), called BRth in the following. This
fictive value should in turn allow us to establish the CPU
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Figure 2: Evolution of average and standard deviation of
sampled BRexp values (201 compress on Linux, server
mode).

time CpuTimeOrig that the non-instrumented application
would consume at any point of its execution. In the version
of the J-RAF2 tool used in this paper, we do not account
the bytecodes added for the instrumentation, neither in the
rewritten application, nor in the rewritten JDK. This im-
plies that the measured BRexp reflects the additional CPU
time CpuTimeInstr consumed, whereas it accounts for
the same amount of bytecodes BIC as executed by the orig-
inal application. These relationships may be formulated as
follows:

BRth = BIC/CpuTimeOrig (1)

BRexp = BIC/CpuTimeInstr (2)

We have shown in previous publications on J-RAF2
(e.g. [12], but in slightly different settings), that our byte-
code instrumentation scheme results in a different execution
time overhead Overheadapp for each application. Know-
ing these overheads, the last equation can be expressed
as follows in Relation 3. The approximation comes from
the fact that overheads are computed from actual measure-
ments, i.e. real (wallclock) execution times in the case of
SPEC JVM98, respectively BOPS (business operations per
second), the measurement metric of SPEC JBB2005; these
benchmarks were however carefully conducted on dedi-
cated machines, with the bare minimum system services
running at the same time.

BRexp ≈ BIC/(CpuTimeOrig ∗ Overheadapp) (3)

Hence, the general formula we use to calculate BRth is:

BRth ≈ BRexp ∗ Overheadapp (4)

The latter formula allows us to evaluate BRth, as shown
in Tables 5 and 6 for SPEC JBB2005, and Table 7 for SPEC
JVM98.
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Table 5: BRth and speedups in JBB2005 (Sun JDK 1.5.0, Intel Pentium 2.6 GHz, Linux 2.6)
Mode BRexp avg % Overheadapp BRth avg BRth speedup Orig. BOPS Orig. speedup

JBB2005 Xint 27 613 228.2% 90 624 – 745 –
JBB2005 client 395 073 71.2% 676 239 7.46 5 260 7.06
JBB2005 server 517 532 59.4% 824 665 9.09 6 283 8.43

Table 6: BRth and speedups in JBB2005 (Sun JDK 1.5.0, Sun Sparc 1.5 GHz, Solaris 10)
Mode BRexp avg % Overheadapp BRth avg BRth speedup Orig. BOPS Orig. speedup

JBB2005 Xint 24 273 309.9% 99 495 – 414 –
JBB2005 client 421 648 76.1% 742 294 7.46 3 535 8.54
JBB2005 server 591 893 86.9% 1 105 933 11.11 5 256 12.69

The third column recalls the BRexp average values al-
ready shown in Tables 1 through 4. The fourth column rep-
resents, for each application, the corresponding measured
J-RAF2 overhead.

The computed BRth average is represented in the
fifth column. We observe that 201 compress and
222 mpegaudio keep the highest average values, also after
applying the respective corrective factor of the overhead.
Moreover, 209 db is confirmed as a bad performer, having
the lowest BRth in client mode.

Then, in column six, we calculate what we call the BRth

speedup due to JIT optimizations; this is obtained by di-
viding, for each application, the BRth for client (and
server) mode by the BRth for interpreted (Xint) mode.
This speedup is a synthetic measure of the relative perfor-
mance of the JIT compilation strategy inside the given JVM.
Nevertheless, it must not be forgotten that the precision of
this value depends on the quality of the underlying mea-
surements, which cannot easily be evaluated. To address
this issue, the last two columns are used for verifying the
results obtained so far, as explained in the following.

5.1. Verification of the Theoretical BR

For the evaluation of the overhead due to the instrumen-
tation, we use as reference values the original wallclock ex-
ecution times (RealT imeOrig) for SPEC JVM98, and the
original BOPS for SPEC JBB2005, as shown in the seventh
column of Tables 5 through 7.

We do the verification of BRth by calculating
Orig. speedup, which is the ratio, for each application, of
the original (i.e., non-instrumented) performance in inter-
preted (Xint) mode to its original performance in client
(and server) mode. For JBB2005, this ratio is inverted,
because of the nature of the BOPS unit of measurement.

The Original speedup should in principle be identical
to the BRth speedup, in the sense that both are a mea-
sure of the performance of the JIT compilation strategy in-
side the given JVM, but this time in the direct execution of
purely non-instrumentated code. Hence, we obtain a ver-
ification scheme for BRth which is not linked to our in-

strumentation, and which can therefore be reproduced inde-
pendently. By comparing columns six (BRth speedup) and
eight (Orig. speedup), we observe linewise fairly close val-
ues, which we interpret as a good validation of our calcula-
tion of BRth, and more generally of the proposed method-
ology. If these speedups were identical, we might con-
clude that our measurements are perfectly precise, which
of course is not the case.

Observing these speedups, the differences may come
from various issues. One possible source of imprecision
is the accumulation of measurement errors, in all the steps
leading to the BRth values, according to Relation 4. An-
other possible source of difference may reside in the influ-
ence that the instrumentation has on various components
of the JVM. In other words, the JIT might compile a given
method in its original form, but not in its instrumented form,
because of its added length or complexity. Concerning GC,
we estimate that the instrumentation does not influence the
speedups, because only a very small number of additional
objects are created. These different influences are hard to
quantify, especially in the black-box approach that we try to
follow, but the fact that the Original speedup and the BRth

speedup are so close tells us that they do remain within well-
defined boundaries.

6. Filtering and Continuous BRexp

Having validated our approach in the previous section,
we address here some issues related to the possible practical
use of BRexp at run-time, in order to implement a portable
means for estimating the CPU consumption of a given ap-
plication.

We argued in Section 4 that the major influence on
BRexp is attributed to the cost of the specific mix of byte-
codes inside each application. To minimize this influence,
we propose different optimizations, which might be further
enhanced, depending on one’s knowledge of the given ap-
plication behavior.
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Table 7: BRth and speedups in JVM98 (Sun JDK 1.5.0 in Xint and client modes, Intel Pentium 2.6 GHz, Linux 2.6)
Mode BRexp avg % Overheadapp BRth avg BRth speedup RealTimeOrig Orig. speedup

201 compress Xint 54 225 115.7% 116 963 – 1 057 035 –
202 jess Xint 25 970 222.4% 83 727 – 22 134 –
209 db Xint 30 586 135.0% 71 877 – 52 042 –
213 javac Xint 27 822 175.3% 76 594 – 277 335 –
222 mpegaudio Xint 76 432 64.9% 126 036 – 894 735 –
227 mtrt Xint 19 207 302.7% 77 347 – 29 668 –
228 jack Xint 22 440 154.3% 57 065 – 183 745 –
201 compress client 1 146 590 54.0% 1 765 749 15.10 7 734 13.67
202 jess client 623 211 32.2% 823 885 9.84 2 514 8.80
209 db client 194 540 7.8% 209 714 2.92 15 493 3.36
213 javac client 395 946 33.0% 526 608 6.88 49 035 5.66
222 mpegaudio client 1 608 147 34.3% 2 159 741 17.14 5 193 17.23
227 mtrt client 673 549 84.2% 1 240 677 16.04 1 826 16.25
228 jack client 245 388 28.6% 315 569 5.53 4 076 4.51

Table 8: Variation of BRexp inside a sliding window of 50 samples (Sun JDK 1.5.0 in client mode)
Linux Solaris

Number of initially Maximal Number of initially Maximal
filtered samples % std. error filtered samples % std. error

201 compress 100 3% 100 2%
202 jess 100 2% 100 2%
209 db 25 12% 25 6%
213 javac 100 12% 100 2%
222 mpegaudio 25 2% 100 2%
227 mtrt 100 4% 100 3%
228 jack 50 3% 25 3%
JBB2005 400 2% 500 1%

6.1. Filtering of Extreme Values

Knowing that the initialization workload at the begin-
ning of most applications is rather important (class load-
ing and initialization) and usually unrelated to its cruis-
ing speed workload, we may enhance the reliability and
stabilization speed of BRexp by dropping a certain quan-
tity of initial samples. Our measurements using SPEC
JVM98 seem to indicate that a reasonable number of ini-
tial samples to ignore lies between 200 and 250 values. On
our Linux/Pentium machine, this number of samples cor-
responds to a duration varying roughly between 0.5 and 5
seconds (depending on the BRexp of the application).

6.2. Continuous BRexp Measurements

Realizing that raw samples are difficult to exploit,
and that the BRexp average does not give a sufficiently
dynamic and localized view of BRexp, we may set up
a sliding window of contiguous samples and compute
statistics on the values collected within each window. This
way, we are able to obtain a smoothed, and at the same
time representative instant view of BRexp, that we call the
continuous BR (CBRexp). Depending on the application
scenario, CBRexp may also be computed in real-time,
provided that the window size is not too large. Extrapo-

lating from our experiments with JVM98 and JBB2005,
we found a window size of 50 samples to be a reasonable
approximation of the behaviour of most applications: larger
windows occupy more memory, whereas smaller windows
yield much more irregular BRexp values.

Table 8 shows the maximal percentage standard error
at any moment, after filtering the given number of initial
values (according to Section 6.1), and using a sliding
window of 50 samples.

7. Discussion

In this paper, we correlate the number of executed byte-
code instructions with the measured CPU time. We have
found BRexp to be a statistically predictable value for any
program - be it in its entirety or in arbitrarily chosen sub-
parts of it - executed in a specific environment. We attribute
this positive result to the locality effect, which, as a rule of
thumb states that a program spends 80% of its time exe-
cuting only 20% of its code. Indeed, the percentage stan-
dard errors remain rather low, whereas BRexp, respectively
BRth differ for each application, suggesting an appreciable
specialization of activities, as it is typically the case in the
SPEC JVM98 benchmark suite. For SPEC JBB2005, the
regularity is shown to be quite good as well.
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7.1. Application-specificity of BRexp

We have seen that BRexp is bound to a given execution
platform (i.e. CPU speed, OS, JVM) and to the application
itself. This dependency means that each application must
be executed once, as a calibration phase, in order to ob-
tain its BRexp, and subsequently to estimate its CPU con-
sumption at production time. This calibration requirement
limits the current practical usability of the BRexp. How-
ever, as exposed in the above section on continuousBR, it
would be possible to have a weak form of prediction by run-
ning the application for a few seconds in order to compute
its BRexp, and then later extrapolate the CPU consumption
from that value.

From a longer-term perspective, we have shown that the
portability of the BIC metric presents many important ad-
vantages in strongly heterogeneous environments [4]. Nev-
ertheless, the ultimate goal is of course to find alternative
approaches to avoid this calibration requirement.

7.2. BRexp Measurement Quality

In this subsection we want to emphasize that the ma-
jor perturbations influencing BRexp are the J-RAF2 instru-
mentation of the code on one hand, and the presence of JIT
compilation, GC, and native code on the other hand.

In this paper, instrumentation with J-RAF2 is done fol-
lowing its most simple, unoptimized scheme. Although this
code transformation scheme results in very high overheads,
the main reason for this choice is that the actual implemen-
tation of this scheme has remained stable over the years,
leading to results that are easy to reproduce.

We recall that in our approach, the activities of the CPU
manager itself are taken into account (and hence correctly
excluded) in our measurements, since the CPU time con-
sumed executing management tasks is deducted from the
time consumed between each activation of the manager.
This means that CPU manager activity has minimal im-
pact at run-time. The influence of our scheme has been
clearly demonstrated in previous papers, and the resulting
overhead is known. We are therefore able to determine
the perturbation it causes: our instrumentation scheme in-
fluences BRexp negatively, especially for object-oriented
benchmarks, because method invocations are “punished”.

Another possible source of perturbation, the JIT com-
piler is active in client and server modes of Sun’s
JVM. The JIT compiles the parts of the code that are ex-
ecuted the most frequently. The natural consequence of this
is that BRexp will increase after each compilation phase.
However, BRexp may temporarily seem to fall during the
actual compilation phase in the case where the JIT executes
in the same thread(s) as the measured application, because
the JIT is native code using CPU time in a way that is not

detectable with bytecode instrumentation. These acceler-
ations and slowdowns will in turn artificially increase the
standard deviation and percentage standard error of BRexp.
In server mode, compilation is even more intensive than
in clientmode, and will cause a more direct perturbation
of BRexp, as attested by the higher percentage standard er-
ror found in Tables 1 and 1.

GC is normally executed in a dedicated thread with Sun’s
JVMs, and since it also is implemented with native code, J-
RAF2 cannot account for it. This means that we will see the
same kind of perturbations as with the JIT.

In summary, all influences on BRexp correspond to the
(known) J-RAF2 instrumentation overhead plus the (as yet
not quantified) perturbations of the JIT, the GC and other
portions of native code. Finding a portable way for estimat-
ing the amount of executed native code in part of our future
activities.

7.3. Choosing the Sampling Frequency

J-RAF2 allows CPU managers to adjust the frequency
at which threads invoke their CPU management code, by
changing the value of the per-thread granularity variable.
This value has to be carefully chosen in order to obtain use-
ful samples. On the one hand, the granularity cannot be too
low, because otherwise the dynamics of JIT compilation and
garbage collection may distort the statistics, and the amount
of memory required for the samples may perturbate the nor-
mal behavior of programs. On the other hand, if the granu-
larity is chosen too high, there will not be enough samples
to obtain insight into the fluctuations of BRexp. Currently,
J-RAF2 allows the value of the granularity to vary roughly
speaking between zero (for “almost zero” delay between
each sample, depending on the chosen kind of instrumen-
tation scheme) and 231 (for a delay of approximatively one
second, on our Intel Pentium 4 at 2.6 GHz).

In order to experimentally determine the granularities
that minimize perturbations, especially the distribution of
samples, with Sun JVM 1.5.0 in its three different execution
modes, we tested the following set of values: 216, 218, 220,
222 and 224. Executions of a test program were launched 10
times with successively one, two, and three threads. Taking
the average of the 10 runs as reference, the sampling distri-
bution is here also expressed as a percentage standard error.
The results for clientmode are shown in Figure 3(b), and
for server mode in Figure 3(c).

In server mode, we discover that the best choice for
minimizing percentage standard error is a granularity of 222

bytecodes. The percentage standard error is then lower than
0.5%. In client mode we found that, for a standard error
lower than 1%, the same granularity is adequate.

The Xint mode completely deactivates the JIT com-
piler, and exhibits as expected even lower distributions, as
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Figure 3: Granularity vs. % Standard Error with Sun JDK.

shown in Figure 3(a). It confirms the results of the other
two modes, even if the discrepancy between the different
number of threads seems much more evident.

8. Related Work

Although many researchers have studied the effect of
Java programs on processor-level instruction and data
caches [11, 15], as well as the level of repetition of method
invocations [10], with the aim of enhancing adaptive compi-
lation schemes, we are aware of no previous publication on
the present correlation between bytecodes and CPU time.
In [15] the authors mention the number of 25 as the average
amount of Sparc machine instructions required for imple-
menting a single bytecode on the older Sun JDK 1.1.6 plat-
form, but this kind of global ratio is obviously too imprecise
for our purpose. In [21] a system of vectors is proposed to
characterize the performance of each JVM and of each ap-
plication; these vectors are determined through an extended
set of micro-benchmarks, and the achieved prediction qual-
ity seems to be fairly good (no precise numbers are pro-
vided); however, the JVMs employed are now rather old.
In [20], a performance prediction scheme for Java is devel-
oped, based on a combination of detailed platform descrip-
tion (including the underlying hardware), of static analysis
and of offline calibration of well-chosen subsets of the ap-
plication code. In contrast, our goal is to try to determine
how far it is possible to progress in terms of prediction qual-
ity, by following a black-box approach, and, hopefully a
simpler methodology.

9. Conclusion

In this paper, we studied the correlation between BIC
and CPU time. We showed that for all of the tested plat-
forms there exists a stable, application-specific ratio of
bytecodes per unit of CPU time – the experimental byte-
code rate (BRexp) – that can be used for translating a
BIC value into the corresponding CPU consumption. An-
other contribution resides in the description of a new, very
fine-grained benchmarking methodology based on portable
bytecode instrumentation instead of less precise standard
profiling APIs. The validity of our approach is assessed
by the establishment of similarities with the performance of
non-instrumented programs run on the same platforms.
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