
DISSERTATION

Designing and Implementing a

Secure, Portable, and EÆcient

Mobile Agent Kernel:

The J-SEAL2 Approach

ausgef�uhrt zum Zwecke der Erlangung des akademischen

Grades eines Doktors der technischen Wissenschaften

eingereicht an der Technischen Universit�at Wien

Fakult�at f�ur Technische Naturwissenschaften und Informatik

von

Walter Binder

Matr. Nr. 9200514

Braungasse 13, 1170 Wien

Wien, im April 2001

Abstract

Even though the bene�ts of mobile agents have been highlighted in numerous

research works, mobile agent applications are not in widespread use today.

For the success of mobile agent applications, secure, portable, and eÆcient

execution platforms for mobile agents are crucial. However, available mobile

agent systems do not meet the high security requirements of commercial

applications, are not portable, or cause high overhead.

Currently, the majority of mobile agent platforms is based on Java. These

systems simply rely on the security facilities of Java, although the Java secu-

rity model is not suited to protect agents and service components from each

other. Above all, Java is lacking a concept of strong protection domains that

could be used to isolate agents.

The J-SEAL2 mobile agent system extends the Java environment with a

model of strong protection domains. The core of the system is a micro-kernel

ful�lling the same functions as a traditional operating system kernel: Protec-

tion, communication, domain termination, and resource control. For porta-

bility reasons, J-SEAL2 is implemented in pure Java. J-SEAL2 provides an

eÆcient communication model and o�ers good scalability and performance

for large-scale applications. This thesis explains the key concepts of the J-

SEAL2 micro-kernel and how they are implemented in Java.

Keywords: Bytecode rewriting, Java, micro-kernel architectures, mobile

agent systems, protection domains, resource control, security

Contents

1 Overview 5

1.1 Introduction . 5

1.2 Mobile Agent Systems in Java 8

1.3 J-SEAL2 System Structure . 10

1.4 J-SEAL2 Security Properties 12

2 Related Work 14

2.1 Java Operating Systems . 14

2.1.1 JavaSeal . 15

2.1.2 Ka�eOS . 16

2.1.3 Alta . 16

2.1.4 J-Kernel . 17

2.1.5 Luna . 17

2.1.6 NOMADS . 17

2.2 Resource Control in Java . 18

2.2.1 JRes . 18

2.2.2 Real-time Extensions for Java 18

2.2.3 Java Pro�lers . 19

2.2.4 Economic Models . 19

3 Protection Domains 21

3.1 Introduction . 21

3.2 Kernel Code . 21

3.2.1 Requirements . 22

3.2.2 Implementation Issues 23

3.3 Protection . 24

3.3.1 Requirements . 24

3.3.2 Implementation Issues 26

2

CONTENTS 3

3.3.2.1 Class-loading 26

3.3.2.2 Extended Bytecode Veri�cation 26

3.4 Domain Termination . 28

3.4.1 Requirements . 28

3.4.2 Implementation Issues 29

4 Communication 31

4.1 Introduction . 31

4.2 Channels . 32

4.3 Limitations of Channels . 32

4.4 External References . 33

4.4.1 Terminology . 34

4.4.2 Properties of External References 35

4.4.3 Examples of External References 39

4.5 Implementation Issues . 40

4.6 Inter Agent Method Calling (IAMC) 41

4.7 Evaluation . 43

5 Resource Control 45

5.1 Introduction . 45

5.2 Objectives and Resulting Model 46

5.2.1 Portability and Transparency 48

5.2.2 Minimal Overhead for Trusted Domains 49

5.2.3 Support for Resource Sharing 49

5.2.4 Managed Resources . 49

5.3 API . 51

5.3.1 De�nitions . 51

5.3.2 Class Res . 52

5.3.3 Class ResSet . 54

5.3.4 Class Seal . 55

5.3.5 Example . 56

5.4 Implementation Issues . 56

5.4.1 No Direct Sharing . 57

5.4.2 Bytecode Rewriting . 57

5.4.3 Domain Types . 58

5.4.4 Accounting Objects . 58

5.4.5 Callbacks from Native Code 60

CONTENTS 4

5.4.6 Shared Classes . 61

5.4.7 Optimizations . 62

5.4.8 Rewriting Abstract Methods 63

5.4.9 Memory Control . 64

5.4.9.1 Heap . 64

5.4.9.2 Stack . 65

5.4.10 CPU Control . 66

5.4.10.1 Class CPUAccount 66

5.4.10.2 Scheduler . 67

5.4.10.3 Rewriting Algorithm 69

5.4.10.4 Optimizations 71

5.4.11 Accounting for Garbage Collection 73

5.4.12 Compensating for Native Code 74

5.5 Evaluation . 75

6 Conclusion 80

6.1 State of Implementation . 80

6.2 Future Work . 82

6.3 Summary . 83

Chapter 1

Overview

1.1 Introduction

Currently, an increasing number of research projects explores mobility in

object-oriented systems. Mobile objects, usually referred to as mobile agents,

are programs that are able to migrate in a network in order to optimize their

consumption of resources, such as network bandwidth, or to accommodate to

a changing environment. During migration, a mobile agent preserves some

state of its execution. Mobile agent technology o�ers many advantages for

distributed computing:

Mobile agents support resource aware computations. Object migration

allows mobile agents to access necessary services locally. Therefore, expensive

remote interactions, such as client-server communication over a network, can

be minimized. Once a mobile agent has been transferred to a server, it may

issue many requests locally at the server. In that way, the use of network

bandwidth can be reduced signi�cantly. For instance, frequently mobile agent

technology is used to search in an environment, where information is stored

in a distributed way (e.g., the Internet). An agent moves directly to an

information provider in order to locally �lter out the relevant information,

which the mobile agent preserves in its state. Consequently, information that

is not relevant to the agent's task is not transmitted over the network.

Other advantages of mobile computations include the support for o�-

line operation. Mobile agent technology allows to create autonomous mobile

computations, which are able to survive temporal network failures and dis-

ruptions. Especially in the context of wireless networks, which su�er from

low bandwidth, high error rates, and frequent disconnections when com-

5

CHAPTER 1. OVERVIEW 6

pared to wireline networks, applications based on mobile agents may help

to overcome the shortcomings of these networks. An agent covering a user's

working set (i.e., the programs and data the user needs to continue working

on a certain task) enables the user to complete a task without maintaining

a permanent network connection. As a result, availability and usability of

such applications are improved, whereas connection costs are reduced.

As a model for distributed computation, mobile agents ease load balanc-

ing and help to improve scalability and fault tolerance. Moreover, an agent-

oriented programming model facilitates the design and implementation of

complex distributed systems.

In order to enable agent mobility, dedicated execution environments {

mobile agent systems { have to be developed and to be deployed widely.

For the success of a mobile agent platform, a sound security model, porta-

bility, and high performance are crucial. Since mobile code may be abused

for security attacks (unauthorized disclosure and modi�cation of information,

denial-of-service attacks, trojan horses, viruses, etc.), mobile agent platforms

must protect the host from malicious (or badly programmed) agents, as well

as each agent from any other agent in the system. In order to support dis-

tributed applications, mobile agent systems have to be portable and to o�er

good scalability and performance. As mobile agent applications typically

are deployed in large-scale heterogeneous environments, such as the Internet,

mobile agent platforms have to support a wide variety of di�erent hardware

platforms and operating systems. Therefore, portability is of paramount

importance for the success of a mobile agent system.

However, most mobile agent systems fail to provide suÆciently strong

security models, are limited to a particular hardware architecture and oper-

ating system, or cause high overhead. As a result, commercial applications

based on mobile agent technology are not in widespread use today.

In contrast to popular mobile agent platforms, the design and implemen-

tation of the J-SEAL2 mobile agent system [5, 6] reconcile strong security

mechanisms with portability and high performance. J-SEAL2 is a micro-

kernel design implemented in pure Java1 [20]; it runs on every Java 2 im-

plementation (JDK 1.2 or higher) [34]. Considering the variety of hardware

used for Internet computing, it is crucial that J-SEAL2 supports as many

di�erent hardware platforms and operating systems as possible. For this rea-

son, J-SEAL2 does not rely on native code nor on modi�cations to the Java

1Java is a trademark of Sun Microsystems, Inc.

CHAPTER 1. OVERVIEW 7

Virtual Machine (JVM) [26].

J-SEAL2 is a complete redesign of JavaSeal, a secure mobile agent system

developed at the University of Geneva [42, 11]. JavaSeal extends the Java

programming environment with a model of mobile agents and strong hier-

archical protection domains. These extensions are based on a formal model

of distributed computation, the Seal Calculus [43]. JavaSeal enables the

expression and e�ective enforcement of security policies, but it incurs high

overhead and does not scale well. Due to performance problems (e.g., ineÆ-

cient communication between di�erent protection domains, enormous agent

startup overhead, etc.), JavaSeal is not suited for large scale applications.

J-SEAL2 is compatible with JavaSeal, but o�ers enhanced security mech-

anisms and signi�cantly improved performance. J-SEAL2 provides resource

control, a new communication model, a high-level communication framework

built on top of the micro-kernel, a new component model for services, as well

as a exible and convenient con�guration mechanism based on XML [10].

This thesis is structured as follows: In chapter 1 we give a short overview

of the Java language [20] and the J-SEAL2 architecture. In section 1.2 we

discuss characteristics of Java that can be used to build secure mobile agent

systems, and explain how shortcomings of the language with respect to agent

security can be overcome. Section 1.3 outlines the structure of the J-SEAL2

micro-kernel and shows an exemplary con�guration of the system. Section

1.4 introduces the main abstractions of J-SEAL2 and summarizes the security

properties of the kernel.

In chapter 2 we compare J-SEAL2 with related work in the area of Java

operating systems. Furthermore, we discuss alternative approaches to re-

source control in Java, which however are not completely portable.

Chapter 3 is devoted to the protection domain model of J-SEAL2. We

explain how to write kernel code in Java and how to achieve protection of

individual applications executing within the same Java runtime environment.

Furthermore, we address various issues regarding safe domain termination

and resource reclamation.

Chapter 4 deals with the communication model of J-SEAL2. We start

with summarizing the features of the communication model of JavaSeal

[42, 11], which has many de�ciencies and imposes an enormous overhead.

Therefore, we designed a complementary communication mechanism in the

J-SEAL2 kernel, which o�ers eÆcient inter-domain communication without

sacri�cing security. This new communication model enables eÆcient high-

CHAPTER 1. OVERVIEW 8

level communication facilities built on top of the micro-kernel. We conclude

this chapter with performance measurements comparing the various commu-

nication mechanisms available in J-SEAL2.

Chapter 5 provides an extensive discussion of the resource control model

in J-SEAL2. We state our requirements and give a coarse overview of the

resulting model. We present the resource control API and explain the imple-

mentation techniques we are resorting to. Initial performance measurements

back our approach.

In the last chapter we give a glimpse on future investigations and sum-

marize the current state of implementation of the J-SEAL2 kernel, as well as

the main contributions of this thesis.

1.2 Mobile Agent Systems in Java

Recently, a large number of mobile agent systems based on Java [20] has

emerged2. In fact, Java is a good choice for the implementation of execu-

tion environments for mobile agents, as it o�ers many features that ease the

development of mobile agent platforms:

� The code of mobile agents has to be represented in a hardware-inde-

pendent format in order to allow agents to migrate in a heterogeneous

environment. The JVM speci�cation [26] de�nes a portable code rep-

resentation for Java programs (bytecode), which is independent of any

particular hardware architecture. Therefore, using JVM bytecode to

represent the code of agents enables code mobility, the basis for agent

mobility.

� In addition to portable code, Java o�ers a serialization mechanism

allowing to capture a mobile agent's state of computation before it

migrates to a di�erent host, and to resurrect the agent in the new

environment. This kind of state transfer is known as weak mobility,

because running threads are lost. The agent is responsible for de�ning

the state of computation to be preserved during migration.

2For an (incomplete) list of di�erent mobile agent platforms see The Mobile Agent

List available via WWW at URL: http://www.informatik.uni-stuttgart.de/ipvr/

vs/projekte/mole/mal/mal.html. Most of the systems presented there are based on

Java.

CHAPTER 1. OVERVIEW 9

� Since a mobile agent platform has to execute multiple agents and ser-

vice components concurrently, it requires a multithreaded environment.

Java supports multithreading and o�ers convenient mechanisms to im-

plement various synchronization protocols.

� Language safety in Java [46] guarantees that the execution of programs

proceeds according to the language semantics. For instance, types are

not misinterpreted and data is not mistaken for executable code. In

Java safety depends on the following techniques: bytecode veri�cation

to ensure that programs are well-formed, strong typing to guarantee

that values are used according to their de�nition, automatic memory

management (garbage collection) to prevent memory leaks and errors

such as deleting live objects, and memory protection to prevent array

and stack operations from overowing. Language safety can be used as

a basis to build secure execution environments for mobile agents.

� Java supports the dynamic loading and linking of code. Class-loader

namespaces can be used in order to isolate the classes of the agent

system and of di�erent agents from each other. For instance, with

the aid of class-loader namespaces it is possible to prevent agents from

substituting system classes with their own code (trojan horses).

� High performance Java runtime systems are available for most hardware

platforms and operating systems. Therefore, mobile agent platforms

written in pure Java are highly portable and may exploit sophisticated

compilation techniques and other optimizations provided by the under-

lying JVM in order to o�er good performance and scalability.

Despite these advantages, the Java security model [34] is not suited to

protect agents and service components from each other. Above all, Java is

lacking a concept of strong protection domains that could be used to iso-

late agents. Because of pervasive aliasing (i.e., direct sharing of objects)

in the Java Development Kit (JDK), there are no protection boundaries

between di�erent components. Furthermore, malicious agents can easily

mount denial-of-service attacks against the platform, possibly even crash-

ing the JVM. Moreover, if a misbehaving agent is detected, the platform

does not guarantee that the agent can be safely removed from the system.

Since the vast majority of current mobile agent platforms simply relies on

CHAPTER 1. OVERVIEW 10

the insuÆcient security facilities of Java, these systems are not suited for

commercial mobile agent applications.

Some researchers have shown that an abstraction similar to the process

concept in operating systems is necessary in order to create secure execu-

tion environments for mobile agents [1]. However, proposed solutions were

either incomplete or required modi�cations of the Java runtime system. In

contrast, the J-SEAL2 mobile agent micro-kernel ensures important security

guarantees without requiring any modi�cations to the underlying Java im-

plementation. For portability reasons, J-SEAL2 is implemented in pure Java

and runs every Java 2 platform.

In traditional operating systems the kernel is responsible for protecting

processes from each other. A process cannot access a foreign memory region

unless that region has been explicitly declared to be shared. Furthermore, the

operating system o�ers some Inter-Process Communication (IPC) facilities,

allowing for a controlled co-operation between di�erent processes. When a

process is terminated, the kernel ensures that it is removed from the system

freeing all resources the terminated process possesses. In addition to this, the

kernel must ensure that the termination of a process does not corrupt any

shared system state. Finally, the operating system guarantees that a process

can only use the resources (e.g., CPU time, memory) it has been given.

The J-SEAL2 micro-kernel ful�lls the same role as an operating system

kernel: It ensures protection of di�erent agents and system components,

provides secure communication facilities, enforces safe domain termination

with immediate resource reclamation, and controls resource allocation.

1.3 J-SEAL2 System Structure

In this section we give a brief overview of the J-SEAL2 mobile agent platform.

More information about the Seal model can be found in [43, 42, 11]. Details

about the design and the implementation of J-SEAL2 are presented in the

following chapters.

J-SEAL2 o�ers a model of nested protection domains. The J-SEAL2

kernel maintains a tree hierarchy of agents and service components. Each

agent and service executes in a protection domain of its own, called a sealed

object or seal for short. Apart from resource limitations, a parent seal may

create an arbitrary number of children seals. The root of the tree hierarchy

is RootSeal, which is responsible for starting system services.

CHAPTER 1. OVERVIEW 11

Mobile
Agents

Services Stationary Agents

Root
Seal

Agent
Manager

E-mail
Service

GUI
Service

Naming
Service

Net
Service

Sandbox
Trusted

Sandbox
Anonym.

Mobile
Agent 2

Mobile
Agent 3

Mobile
Agent 1

Figure 1.1: J-SEAL2 nested protection domains.

RootSeal reads a XML [10] con�guration �le describing the service in-

frastructure to be created. Due to a generic con�guration format, each ser-

vice may specify its own set of con�guration parameters (nested parameter

structures are supported as well). RootSeal executes a well-de�ned service

registration protocol, where each service seal registers its interfaces in a local

naming service maintained by RootSeal. Figure 1.1 shows some frequently

used service seals:

� The network service receives mobile agents from other hosts and allows

to send them out again. Depending on the application, the network

service may implement some protocols to authenticate remote hosts.

Furthermore, it is possible to install di�erent network services in the

same J-SEAL2 platform, which may be important if multiple mobile

agent applications execute within a single J-SEAL2 installation. Unlike

most other mobile agent systems, the J-SEAL2 kernel does not have

any built-in networking support. Therefore, network communication is

not further discussed in this thesis.

CHAPTER 1. OVERVIEW 12

� The naming service provides access to a global service registry. If an

agent requires a service not available locally, it contacts the global

naming service in order to �nd out the Internet address (e.g., host

name and port) of a remote J-SEAL2 installation o�ering the required

service. Afterwards, the agent employs a network service for migration.

� The GUI service provides a simple window manager interface enabling

agents to directly interact with users. The GUI service may be used by

agents while they execute on the host of their client. In J-SEAL2 server

installations the GUI service may be accessed only by dedicated sta-

tionary management and monitoring agents interacting with the system

administrator.

� The E-mail service is used by agents performing some long lasting

o�-line operations on behalf of their users. For instance, consider a

shopping agent searching for a certain product: The user may want

the agent to keep an eye on the market for some days or weeks in order

to wait for a cheap o�er. The agent may use the E-mail service in order

to inform the user of new interesting o�ers.

Having started all service components, RootSeal installs a stationary

agent acting as a container for other agents. This stationary agent man-

ager may create additional stationary sandbox managers as children seals,

each of them responsible for di�erent types of incoming mobile agents. Fig-

ure 1.1 shows a typical con�guration, where the agent manager installs two

sandboxes: One sandbox executes authenticated, fully trusted agents, while

the other one is responsible for anonymous, potentially malicious agents.

The agent manager is granted access to the local naming service. There-

fore, it may employ all services. Each seal may de�ne di�erent security

policies for its nested domains. For instance, the agent manager may allow

the sandbox of trusted agents to access arbitrary services, while the sandbox

of anonymous agents may only use the network service in a restricted way.

1.4 J-SEAL2 Security Properties

The J-SEAL2 kernel isolates seals from each other. The kernel acts as a refer-

ence monitor ensuring that there is no direct sharing of object references with

distinct seals. J-SEAL2 guarantees accountability, i.e., every object belongs

CHAPTER 1. OVERVIEW 13

to exactly one protection domain. This feature eases memory accounting and

protection domain termination.

Communication between distinct seals requires kernel primitives (see sec-

tion 4), objects are passed always by deep copy within so-called capsules.

In that way, the kernel prevents direct sharing of object references between

di�erent protection domains. This property is crucial for protection domain

isolation, as aliasing between di�erent domains would undermine protection.

J-SEAL2 o�ers two di�erent communication mechanisms, channels and

external references. Channels only support direct communication between

seals that are neighbours in the hierarchy. Channel communication ensures

that a parent seal is able to isolate a child completely from other domains.

External references allow indirect sharing of objects by di�erent seals, which

enables eÆcient communication shortcuts in deep seal hierarchies. For secu-

rity reasons, external references are tracked by the J-SEAL2 kernel and may

be invalidated at any time. External references are the basis for eÆcient

high-level communication frameworks.

Agents are not allowed to directly use functionality o�ered by the JDK

classes. Instead of employing the JDK, agents have to contact corresponding

service seals, succeeding only if all seals on the shortest path in the hierarchy

between the agent and the service are granting access to that service. The

JDK functionality available to individual service seals can be con�gured by

the system administrator.

Seals are multithreaded protection domains. Every seal can run an arbi-

trary number of secure threads concurrently. The J-SEAL2 kernel ensures

that a parent seal may terminate its children at any time. As a consequence,

all threads in the child domain are stopped and all memory resources used

by the child seal become eligible for garbage collection immediately.

Summing up, the J-SEAL2 kernel ensures the following important secu-

rity properties [11]:

Con�nement: A seal is isolated from other parts of the system. Its actions

cannot a�ect other parts of the system.

Mediation: It is possible to interpose security code between a seal and the

rest of the system, i.e., all messages from an untrusted seal can be

intercepted and veri�ed before they are forwarded to other seals.

Faithfulness: Code executed in a seal really belongs to that seal. It is

impossible to force a seal to execute foreign code.

Chapter 2

Related Work

In this chapter we compare the J-SEAL2 mobile agent kernel with related

work. We distinguish two broad categories of related work on improving

the security of Java runtime environments: Java operating systems o�ering

protection domains in order to isolate applications from each other, and Java-

based systems which provide mechanisms for resource accounting or control,

but do not enforce a strict separation of individual components.

2.1 Java Operating Systems

Java operating systems incorporate a process model in a Java environment,

which allows multiple applications to execute concurrently but isolated within

a single JVM. In contrast to multiple JVM processes running in di�erent ad-

dress spaces on a traditional operating system, a Java operating system may

support very eÆcient communication mechanisms within the same address

space (i.e., safe sharing between distinct protection domains). Furthermore,

a single address space enables the sharing of frequently used classes, such as

the JDK and tools like XML parsers [10]. Thus, the memory requirements

and the overhead to start new applications are reduced signi�cantly. In ad-

dition to these advantages, Java operating systems can be used on embedded

or portable devices that do not o�er operating system or hardware support

to manage multiple processes.

In this section we di�erentiate the J-SEAL2 kernel from other Java oper-

ating systems regarding the supported communication models, the resource

control facilities, the domain termination characteristics, and to which extent

14

CHAPTER 2. RELATED WORK 15

the implementation is portable or not.

2.1.1 JavaSeal

JavaSeal [42, 11], developed by the Object System Group at the University

of Geneva, is the �rst implementation of the Seal Calculus [43], a formal

model for secure mobile computations in open network environments. Like

J-SEAL2, JavaSeal is implemented in pure Java. It provides the same hierar-

chical model as J-SEAL2, even the APIs for domain creation and termination

are compatible.

However, concerning the communication model, JavaSeal supports only

synchronous message passing over named channels (see section 4.2). JavaSeal

allows neighbour domains to exchange messages by deep-copy, but it does

not o�er any means for direct or indirect object sharing between di�erent do-

mains. Consequently, JavaSeal incurs high communication overhead in deep

hierarchies. Conversely, J-SEAL2 supports external references (see section

4.4), an eÆcient but secure mechanism for indirect sharing.

While the hierarchical domain model of JavaSeal is a prerequisite for the

resource control model presented in chapter 5, JavaSeal does not address

denial-of-service attacks. In contrast to J-SEAL2, there is no accounting for

physical and logical resources in JavaSeal. Also the formal model of JavaSeal,

the Seal Calculus, does not deal with resource control.

JavaSeal aims at ensuring safe domain termination with immediate re-

source reclamation, but due to shortcomings in the design and implementa-

tion of JavaSeal, domain termination may corrupt the shared system state1,

and malicious domains may prevent their termination. Furthermore, in the

JavaSeal implementation certain kernel objects encapsulating communica-

tion messages are shared between distinct domains for performance reasons.

While these objects cannot be accessed by user code, direct sharing may

prevent memory reclamation by the garbage collector after the termination

of a protection domain. The careful design and implementation of J-SEAL2

encompasses several improvements to ensure that a parent domain can safely

terminate its children at any time, and that the garbage collector is able to

reclaim all allocated memory resources during the next garbage collection

cycle.

1E.g., during domain termination a thread may be stopped while it is loading and

linking a class. As a result, some structures inside the JVM may be corrupted.

CHAPTER 2. RELATED WORK 16

2.1.2 Ka�eOS

Our work on the J-SEAL2 mobile agent micro-kernel is related to work on

protection in single-language mobile code environments. Especially the Utah

Flux Research Group has worked on the design and implementation of secure

single address space operating systems implemented in Java [3, 2].

Ka�eOS [1, 2] is a Java runtime system which supports the operating

system abstraction of processes to isolate applications from each other, as

if they were run on their own JVM. Thanks to Ka�eOS, a modi�ed version

of the freely available Ka�e virtual machine [45], it is possible to achieve

resource control with a higher precision than what is possible with byte-

code rewriting techniques, where, for example, memory accounting is limited

to controlling the respective amounts consumed in the common heap, and

where CPU control does not account for time spent by the common garbage

collector working for the respective applications.

The Ka�eOS approach should by design result in better performance, but

is however inherently non-portable. This means that optimizations found in

compilers and standard JVMs are not bene�ted from: in a recent publication

[2] the authors report that, in absence of denial-of-service attacks, IBM's

compiler and JVM [32] is 2{5 times faster than theirs.

2.1.3 Alta

Developed by the same team as Ka�eOS, Alta [40, 3] is a prototype based on

the Fluke hierarchical process model, and implemented on the Ka�e virtual

machine [45]. The main di�erences with Ka�eOS are that a single garbage

collector is responsible for all applications, and that Alta entirely respects

the hierarchical process model of Fluke by providing resource control APIs,

whereas Ka�eOS only retains a more implicit nested CPU and memory man-

agement scheme.

Like J-SEAL2, the Alta operating system is a micro-kernel design. Its

hierarchical process model supports CPU control through CPU Inheritance

Scheduling [18], where a process may donate some percentage of its CPU

resources to nested child processes.

However, the Alta design cannot be implemented in pure Java. Alta relies

on modi�cations to the JVM, whereas J-SEAL2 runs on every Java 2 imple-

mentation. We are convinced that the portability of a mobile agent platform

is crucial for its successful deployment in large-scale commercial projects.

CHAPTER 2. RELATED WORK 17

Furthermore, considering the enormous pace of new JVM implementations

o�ering rapidly increasing performance, it is almost impossible to maintain

a modi�ed JVM o�ering suÆcient performance.

2.1.4 J-Kernel

J-Kernel [44] is a Java micro-kernel supporting multiple protection domains.

In J-Kernel communication is based on capabilities. Java objects can be

shared indirectly by passing references to capability objects. However, J-

Kernel is lacking the hierarchical model of J-SEAL2. Moreover, in J-Kernel

cross-domain calls may block in�nitely and may delay protection domain

termination. J-Kernel supports per thread memory accounting via bytecode

rewriting [14]. Like J-SEAL2, J-Kernel is implemented completely in Java,

only CPU accounting requires native code.

2.1.5 Luna

Luna [22, 21] is a Java extension that provides a task model for Java based

on a type system, which distinguishes between task-local pointers and re-

mote pointers shared between multiple tasks. Access to remote pointers is

controlled by permits that can be revoked at any time. When a task is ter-

minated, Luna revokes all remote pointers into that task. While J-SEAL2

supports only coarse-grained indirect sharing between di�erent domains with

the aid of external references (see section 4.4), remote pointers in Luna en-

able �ne-grained direct sharing of individual objects between distinct tasks.

However, Luna is not portable, as it is based on an extension to a Java

runtime system.

2.1.6 NOMADS

NOMADS [37] is a mobile agent system which has the ability to control re-

sources used by agents, including protection against denial-of-service attacks.

The NOMADS execution environment is based on a Java-compatible VM,

the Aroma VM, a copy of which is instantiated for each agent. There is no

resource control model or API in NOMADS; resources are managed manu-

ally, on a per-agent basis or using a non-hierarchical notion of group. Relying

on a specialized VM, it follows that the overhead is smaller than with our

approach; currently, CPU control is however not implemented.

CHAPTER 2. RELATED WORK 18

2.2 Resource Control in Java

There are several lines of research, where libraries, environments, and analysis

tools have been designed that can be exploited to prevent denial-of-service

attacks.

2.2.1 JRes

JRes [14] is a resource control system which takes CPU, memory, and network

resource consumption into account. The resource management model of JRes

works at the level of individual Java threads; in other words, there is no notion

of application as a group of threads, and the implementation of resource

control policies is therefore cumbersome. JRes is a pure resource accounting

system and does not enforce any separation of domains; covering this other

aspect is the goal of J-Kernel [44], a complementary project of the same

research team (see section 2.1.4).

For its implementation, JRes does not need any modi�cation to the JVM,

but relies on a combination of bytecode rewriting and native code libraries.

To perform CPU accounting, the approach of JRes is to make calls to the

underlying operating system, which requires native code to be accessed2. For

memory accounting, it essentially uses bytecode rewriting, but still needs

the support of a native method to account for memory occupied by array

objects. Finally, to achieve accounting of network bandwidth, the authors of

JRes also resort to native code, since they swapped the standard java.net

package with their own version of it.

2.2.2 Real-time Extensions for Java

The Real-Time for Java Experts Group has published a proposal to add

real-time extensions to Java [9]. One important focus of this work is to en-

sure predictable garbage collection characteristics in order to meet real-time

guarantees. For instance, the speci�cation provides for several memory man-

agement schemes, such as areas with limited lifetime or bounded allocation

rates, which could be implemented { or at least simulated { with the resource

control model described in this thesis.

2More precisely, CPU accounting in JRes is based on native threads, a feature not

supported by every JVM.

CHAPTER 2. RELATED WORK 19

Another real-time system, PERC [28], extends Java to support real-time

performance guarantees. To this end, the PERC system analyzes Java byte-

codes to determine memory requirements and maximal execution times, and

feeds that information to a real-time scheduler. The objective of real-time

systems is to provide precise guarantees e.g. for worst-time execution; our fo-

cus, on the other hand, is on computing approximated resource consumptions

in order to prevent denial-of-service attacks. We are more interested in the

relative values of applications, and less in absolute �gures. This is con�rmed

by the fact that we are not trying to estimate their real CPU consumption,

but rather to compare the respective number of executed bytecodes.

2.2.3 Java Pro�lers

Pro�lers constitute another class of tools that have many things in common

with resource control: both intend to gather information about resource us-

age. Pro�lers however are designed to help developers optimize the eÆciency

of their applications, and not to externally control their resource consump-

tion. The Java Virtual Machine Pro�ling Interface (JVMPI) [36] is an API

created by Sun; it is a set of hooks to the JVM which signals interesting

events like thread start and object allocations.

Java Usage Monitor (JUM) [16] is a tool which builds upon JVMPI to

help the developer determining how much CPU is consumed by the di�erent

threads of an application and how much memory they use. JUM needs native

code to obtain information from the underlying operating system about how

CPU time is allocated, and is therefore not portable.

Interestingly, JUM is able to also account for objects allocated by native

code. However, JUM is not able to enforce memory limits. While J-SEAL2

allows for exact pre-accounting of memory resources, where an overuse excep-

tion is generated before a thread exceeds its memory limit, a resource control

mechanism based on JUM can only react after a memory overuse is detected.

In addition to these limitations, JVMPI is an experimental interface, it is not

yet a standard pro�ling interface.

2.2.4 Economic Models

Finally, we mention some approaches that rely on economics-based theo-

ries, using virtual currencies to achieve natural load-balancing of concurrent

CHAPTER 2. RELATED WORK 20

applications, as well as recycling of unused resources in open distributed en-

vironments, with the anticipated side-e�ect of preventing denial-of-service

attacks [39]. Our focus is however more on how to implement the basic

resource accounting mechanisms on a speci�c platform, Java, than on the

design of high-level { and distributed { resource allocation policies. Never-

theless, whereas the spirit of this thesis is rather conservative, it does not

exclude the application of the presently described techniques to the imple-

mentation of open computational markets.

Chapter 3

Protection Domains

3.1 Introduction

The core of the J-SEAL2 mobile agent system is a compact micro-kernel,

which o�ers a minimal set of abstractions necessary to program secure agent

environments: protection domains for agents and services (seals), concurrent

activities (threads), as well as communication facilities (channels and external

references).

In this chapter we present the protection domain model of J-SEAL2,

which resembles the process model of a traditional operating system. Pro-

tection domains in J-SEAL2 enable the isolation of multiple applications

running in the same JVM from each other. Like an operating system, the

J-SEAL2 micro-kernel employs a user/kernel distinction in order to maintain

system integrity in the presence of protection domain termination.

In section 3.2 we state requirements for kernel code written in Java and

show how kernel entry and exit can be implemented eÆciently. The following

two sections deal with protection and protection domain termination. In each

section we state our requirements for the J-SEAL2 kernel and discuss various

implementation issues and techniques that help to meet these requirements

eÆciently.

3.2 Kernel Code

Like a traditional operating system, J-SEAL2 is divided into user and kernel

parts. While user mode and kernel mode do not indicate a change in hardware

21

CHAPTER 3. PROTECTION DOMAINS 22

privileges, they provide distinct environments regarding protection domain

termination. In this section we discuss various issues arising from the design

and implementation of an operating system kernel in Java.

3.2.1 Requirements

Since seals are multithreaded and certain kernel structures must be accessible

from di�erent seals, a kernel synchronization protocol must ensure proper

synchronization and prevent deadlocks. Kernel code must not synchronize on

objects that are accessible by agents. Otherwise, agents could cause kernel

code to block in�nitely (i.e., a thread of an agent could initiate a kernel

operation after a di�erent thread has obtained a lock on an object, which

the kernel also needs). Instead, kernel code shall lock only internal structures,

such as private members of kernel abstractions.

Kernel operations are to be performed atomically: they must either suc-

ceed or leave the kernel state unchanged. Kernel operations must take

care not to cause any uncaught exceptions. In particular, special atten-

tion has to be paid to exceptions that can occur asynchronously, such as

e.g. ThreadDeath, OutOfMemoryError, or StackOverflowError.

ThreadDeath is thrown, if a thread stops another one with the aid of

Thread.stop(). The stopped thread immediately exits all monitors it holds

and throws ThreadDeath. Since this may leave objects in an inconsistent

state, Thread.stop() has been deprecated in the Java 2 platform. How-

ever, because the Java 2 platform does not o�er any alternative mecha-

nisms for thread stopping, protection domain termination must be based

on Thread.stop(). The kernel has to ensure that stop requests are deferred

while a thread is accessing kernel structures.

OutOfMemoryError is thrown whenever the virtual machine runs out of

memory and the garbage collector fails to reclaim enough memory. Kernel

operations must be designed to avoid OutOfMemoryError after the operation

has modi�ed some kernel state. A simple solution is to allocate all objects

that might be required (worst case estimation) in advance before any changes

are made. Following this approach, kernel structures should not employ Java

utility classes, such as the collections framework, since these classes allocate

objects on demand.

CHAPTER 3. PROTECTION DOMAINS 23

3.2.2 Implementation Issues

Operating systems employ a privileged processing mode for kernel opera-

tions. Only a process executing in kernel mode has access to all processor

instructions and kernel internals (special memory regions). The J-SEAL2

kernel uses a similar distinction: When a thread initiates a kernel operation,

it enters a privileged kernel mode. When the kernel operation completes (suc-

ceeds or fails), the thread leaves the kernel mode and continues execution in

user mode.

The main purpose of the kernel mode in J-SEAL2 is to prevent a thread

from being stopped while accessing kernel internals. Stop requests are de-

ferred until the thread to be stopped leaves the kernel. In addition to de-

ferring stop requests, kernel mode is used to synchronize primitives a�ecting

the J-SEAL2 kernel abstractions, such as protection domain creation and

termination, thread creation, as well as communication requests.

We distinguish between exclusive and shared kernel mode. A thread

entering exclusive kernel mode is blocked until no other thread is executing

in the kernel. While a thread is executing in exclusive kernel mode, no

other thread can enter the kernel. Protection domain termination is always

performed in exclusive kernel mode. Therefore, threads executing in kernel

mode are guaranteed not to be stopped asynchronously.

The J-SEAL2 kernel uses a single-writer/multiple-reader lock for con-

trolling access to the kernel: Entering exclusive kernel mode corresponds to

acquiring the write lock, whereas shared kernel mode requires a read lock.

The lock implementation ensures that a thread waiting for the write lock will

enter the kernel before threads waiting for a read lock. This property makes

sure that domain termination cannot be delayed in�nitely.

The lock object must be implemented very carefully: When a thread is

trying to obtain a read lock or the write lock, it is still executing in user mode.

Entering kernel mode means that the lock has been obtained successfully.

Thus, the state of the lock object must not be changed before the required

lock is really available, otherwise this would be a forbidden modi�cation of

a kernel object (the lock object) by a thread executing in user mode. As a

result, sophisticated queuing techniques to control the order of kernel entries

cannot be implemented easily, since enqueuing a request is a modi�cation of

kernel structures.

Since class-loading a�ects the internal state of the Java runtime system,

CHAPTER 3. PROTECTION DOMAINS 24

we must ensure that class-loading always occurs in kernel mode. A thread

must not be stopped while it is loading a class, since this might corrupt some

internal structures of the JVM. However, in general class-loading occurs asyn-

chronously, dependent on the virtual machine implementation. Therefore, we

do not know whether a class-loading thread already executes in kernel mode

or not.

For this reason, the J-SEAL2 kernel o�ers a conditional kernel enter oper-

ation: A shared lock is only obtained, if the requesting thread is not yet exe-

cuting in kernel mode. Implementing this operation requires keeping track of

all threads that are executing in kernel mode. Because entering kernel mode

is a very frequent operation (for instance, each communication involves at

least one switch into kernel mode), adding threads to and removing threads

from the set of threads executing in kernel mode must be highly optimized.

Although kernel entry and exit are extremely frequent operations, mea-

surements indicate that less than 3% of the overall CPU time is spent for

obtaining and releasing kernel locks. The benchmark measures communi-

cation latency and throughput in deep seal hierarchies, thus it shows the

highest possible kernel entry/exit frequency (worst case).

Because operations requiring exclusive kernel mode are not executed fre-

quently, the kernel lock does not become a signi�cant performance bottleneck.

Resource control (see chapter 5) ensures that an agent cannot enter the kernel

arbitrarily. Therefore, the kernel lock cannot be abused for denial-of-service

attacks.

3.3 Protection

The kernel of a traditional operating system ensures that a process can only

access its own memory pages. The operating system kernel relies on the

memory management unit of the processor in order to detect illegal memory

accesses. A mobile agent kernel has to enforce similar protection. The kernel

must protect itself as well as each agent from any other agent in the system.

3.3.1 Requirements

Language safety in Java, a combination of strong typing, memory protection,

automatic memory management, and bytecode veri�cation (see section 1.2),

already guarantees some basic protection, as it is not possible to forge object

CHAPTER 3. PROTECTION DOMAINS 25

references. However, language safety itself does not guarantee protection in

a mobile agent execution environment. Pervasive aliasing in object-oriented

languages leads to a situation where it is impossible to determine which

objects belong to a certain agent and therefore to check whether an access to

a particular object is permitted or not. It is crucial to introduce the concept

of strong protection domains, similar to the process abstraction in operating

systems.

A protection domain draws a boundary around a component (i.e., a mo-

bile agent or a service). It encapsulates the set of classes required by the

component, some concurrent activities (threads), as well as all objects allo-

cated by these threads. In general, threads shall only execute in their own

protection domain. Special precaution is necessary to allow threads to cross

domain boundaries. Furthermore, the kernel must prevent object references

from being passed over protection domain boundaries. The kernel ensures

that an object reference exists only in a single domain. This property is very

important for memory accounting, too.

Each protection domain has associated its own set of classes. In general,

di�erent components must not share the same classes, since this would mean

to share also the static variables in these classes (i.e., shared static variables

would introduce aliasing of object references between di�erent domains, or

even worse, if static variables were not �nal, they could be used as covert

communication channels the kernel could not control). However, some classes

from the JDK must be shared by all components in order to ensure correct

function of the JVM. Nevertheless, mobile agents must not employ JDK

classes comprising functionality that undermines protection. For this reason,

extended bytecode veri�cation of agent classes is necessary.

Another issue to be addressed by a mobile agent system is protection

of resources, such as �les or network ports. While in monolithic operating

systems the kernel usually deals with resource protection, micro-kernel archi-

tectures simply ensure that security policies can be implemented at a higher

level. Similarly, a mobile agent micro-kernel does not have to deal with se-

curity policies. Rather, it must make sure that only privileged domains can

access system resources. For Java, this means that agent domains must not

have access to certain core packages, such as java.io or java.net. Such

restrictions can be enforced by extended bytecode veri�cation.

CHAPTER 3. PROTECTION DOMAINS 26

3.3.2 Implementation Issues

3.3.2.1 Class-loading

The J-SEAL2 kernel employs a separate class-loader namespace for each

protection domain. A global con�guration de�nes the set of classes to be

shared by all domains. These classes are loaded by the JVM system class-

loader. All other classes are loaded by the protection domain class-loader

(replicated classes).

In order to ensure proper function of the Java runtime system, all JDK

classes are shared. This does not introduce security problems, as the ex-

tended J-SEAL2 veri�er assures that agents cannot use dangerous JDK func-

tionality. Since replicating classes limits performance and increases agent

startup overhead as well as memory consumption (above all, the same meth-

ods are compiled multiple times), the J-SEAL2 kernel is designed to minimize

replicated kernel classes. In the current implementation only three small

classes from the communication subsystem are replicated. This is necessary

to ensure that serialized object graphs received by a protection domain are

resurrected using the class-loader of the receiving domain.

Agent classes as well as classes from the J-SEAL2 library are replicated.

To minimize the overhead of replicating library classes, the J-SEAL2 class-

loader can be con�gured to cache the class-�les residing in certain library

packages. Since loading a class-�le from disk is the most signi�cant perfor-

mance bottleneck, a proper caching con�guration yields a speedup in agent

creation by more than factor 2.

3.3.2.2 Extended Bytecode Veri�cation

Agent class-�les are veri�ed by a special J-SEAL2 veri�er in order to ensure

that the agent does not use certain JDK and kernel classes. By this means

the kernel protects itself and the underlying JVM from being corrupted by

malicious or badly programmed agents. Each protection domain can have its

own directives declaring which classes may be referenced. Directives include

the following types of restrictions:

� Access can be restricted to certain packages, eventually including sub-

packages.

� Access to individual classes can be allowed or forbidden.

CHAPTER 3. PROTECTION DOMAINS 27

� Access to individual class members can be allowed or forbidden.

� Extension of non-�nal classes can be prohibited.

� Agent classes must reside in a particular package or in a subpackage

thereof.

The possibility to prevent the extension of certain classes and to con-

trol access at the level of individual class members helps to structure the

J-SEAL2 kernel in a clean way. For example, we used multiple packages to

separate di�erent parts of the kernel. Public access modi�ers were necessary

to allow the interoperation of distinct kernel components. The directives

ensure that agents cannot access certain kernel internals that had to be de-

clared public for software engineering reasons. More generally, we think it is

important to distinguish between software engineering practices and security

engineering techniques: Java access modi�ers and subtyping are very useful

for software engineering purposes, whereas security engineering takes place

in the speci�cation of directives.

To ensure that a given class-�le does not violate a particular set of direc-

tives it is suÆcient to verify that the constant pool of the class-�le does not

refer to forbidden classes or members and that extension of the superclass is

not prohibited. Each member (�eld, method, constructor) that is accessed

by a method/constructor of the veri�ed class has an entry in the class-�le

constant pool. Thus, it is not necessary to verify method/constructor code.

The veri�cation algorithm consists of two passes: In the �rst pass, the

constant pool is parsed and a constant pool representation is created. In

the second pass, the constant pool representation is scanned for class refer-

ences, member references, and type signatures. Class references as well as

class names in type signatures must denote allowed classes. Member ref-

erences have to specify allowed members. An eÆcient array representation

of the constant pool as well as an optimized internal representation of the

veri�cation directives help to minimize veri�cation costs.

Benchmarks measuring agent startup overhead indicate that veri�cation

overhead is less than 9% of the CPU time spent for class-loading. These mea-

surements also include the costs for additional veri�cation to ensure proper

domain termination (see section 3.4).

CHAPTER 3. PROTECTION DOMAINS 28

3.4 Domain Termination

Operating systems provide means to terminate running processes. All mem-

ory resources the terminated process had allocated before become available

to other processes. The operating system kernel must ensure that neither its

own resources nor any other shared resources are corrupted when a process

is killed.

3.4.1 Requirements

When a protection domain is terminated, all threads belonging to that do-

main have to be stopped. In Java the only means to stop a running thread

asynchronously is Thread.stop(). However, this operation has been depre-

cated in the Java 2 platform, as it is inherently unsafe. When a thread is

stopped, it exits all monitors immediately and throws ThreadDeath. As a

consequence, objects may be left in an inconsistent state.

In chapter 3.2 we have already stated requirements for kernel code to

ensure that shared resources, such as internal structures of the kernel and

of the Java runtime system, cannot be corrupted when a thread is stopped

asynchronously. The idea is to defer stop requests if the thread to be stopped

is accessing the kernel. A simple solution is to ensure that no other thread

can access the kernel while a thread is stopping another one.

When a thread is stopped, there is no guarantee that the stopped thread

will really terminate. Depending on the executed code, ThreadDeath might

be caught or a finallyfg clause might execute an in�nite loop. Since the ker-

nel must ensure immediate resource reclamation when a protection domain is

terminated, special veri�cation is necessary to ensure that agent code cannot

prevent or delay domain termination. Thus, exception handlers of agents

must immediately rethrow caught ThreadDeath exceptions. J-SEAL2 o�ers

a class-�le rewriting tool to modify exception handlers accordingly. At run-

time the extended bytecode veri�er simply checks whether all agent classes

have been rewritten correctly.

In addition to these restrictions, agents must not de�ne �nalizers or class

�nalizers. These special methods are invoked by the garbage collector before

an object or a class is reclaimed. If these methods contained some in�nite

loops, they would hang up the whole system.

CHAPTER 3. PROTECTION DOMAINS 29

3.4.2 Implementation Issues

Safe thread stopping is achieved through special kernel entry and exit se-

quences. A thread terminating a protection domain enters exclusive kernel

mode. It is blocked until all other threads have left the kernel. Terminating

a protection domain is an atomic kernel operation. All threads belonging to

the domain are stopped within the same kernel operation. Since the threads

to be stopped cannot enter the kernel, this approach enforces safe domain

termination. In order to prevent the corruption of internal structures in-

side the JVM, class-loading always occurs in kernel mode. Details about the

kernel mode can be found in section 3.2.

In order to prevent agents from delaying their termination, the J-SEAL2

veri�er ensures that agent methods do not use forbidden Java constructs. The

method signatures of all de�ned methods must be di�erent from finalize()

and classFinalize(). Furthermore, the exception tables of all methods

are examined in order to determine the types of caught exceptions. Agents

are not allowed to catch ThreadDeath. If an exception handler catches a

supertype of ThreadDeath (i.e., Throwable or Error), the handler code has

to determine whether the actual type of a caught exception is ThreadDeath.

In this case, the handler must rethrow ThreadDeath immediately.

The JVM supports a special catch type in the exception table to indicate

that all exceptions are caught by a particular exception handler. Java com-

pilers use this feature to compile finallyfg clauses and synchronizedfg

statements [26]. The J-SEAL2 veri�er ensures that these special exception

handlers include code to rethrow a caught ThreadDeath exception immedi-

ately, too.

Because exception handlers catching all exceptions are not present in the

original Java code, we have implemented a bytecode rewriting tool to process

agent classes generated by standard Java compilers. This tool has to be used

by J-SEAL2 programmers before they package their agents. It examines all

exception handlers that could potentially catch ThreadDeath exceptions and

inserts a short bytecode sequence (4 JVM instructions) to rethrow a caught

ThreadDeath exception immediately. Our implementation is based on the

bytecode engineering library by Markus Dahm [15].

The rewritten exception handlers rethrow ThreadDeath exceptions before

any locks are released, because the monitorexit instruction of the JVM

might throw NullPointerException or IllegalMonitorStateException.

CHAPTER 3. PROTECTION DOMAINS 30

However, since we are rethrowing ThreadDeath before releasing locks, an

eventually locked object will never be unlocked and could cause a deadlock,

if another thread tried to lock it later. Since there is no direct sharing of

objects between di�erent protection domains and because kernel code must

not lock objects that are accessible by agents (see section 3.2), only objects

belonging to the terminated agent may be left in a locked state. This is not

a problem, since the agent is removed from the system anyway.

The J-SEAL2 veri�er simply checks whether all agent classes have been

rewritten accordingly. Benchmarks show that our veri�cation mechanism

does not introduce much overhead at runtime. Even for complex agents the

total veri�cation costs, including constant pool veri�cation as described in

section 3.3, does not exceed 10% of the total time for class-loading.

Chapter 4

Communication

4.1 Introduction

In operating systems co-operating processes can exchange messages through

Inter-Process Communication (IPC) facilities provided by the kernel. Process

protection ensures that IPC is the only means to exchange information over

process boundaries. As a mobile agent kernel isolates agents from each other,

it must also provide some means for inter-agent communication in order to

allow agents to collaborate.

As we have stressed in the previous chapter, a secure mobile agent kernel

has to provide strong protection domains. An agent executes within a pro-

tection domain, it is isolated from the rest of the system. If agents need to

exchange some messages, all communication partners have to ask the kernel

to establish a communication channel. The kernel ensures that communi-

cation partners can only access certain channels if they have the necessary

permissions.

The J-SEAL2 kernel o�ers two di�erent communication facilities, chan-

nels and external references. In both cases, messages are passed by value.

The kernel creates a deep copy of the message before it passes it to the re-

ceiver. In that way, the kernel prevents direct sharing of object references

between di�erent protection domains. This property is crucial for protection

domain isolation, as aliasing between di�erent domains would undermine

protection. Furthermore, resource accounting is largely simpli�ed by the

fact that every object reference exists in only a single protection domain.

This chapter is organized as follows: In section 4.2 we summarize the

features of the channel communication mechanism, which corresponds to the

31

CHAPTER 4. COMMUNICATION 32

communication model in JavaSeal [42, 11]. In section 4.3 we discuss the se-

vere shortcomings of the channel mechanism, which are solved by the new

external reference communication model presented in section 4.4. The fol-

lowing section deals with issues arising from the implementation of channels

and external references in Java. In section 4.6 we outline Inter Agent Method

Calling (IAMC), a high-level communication protocol implemented eÆciently

on top of the J-SEAL2 micro-kernel. Finally, in section 4.7 we compare the

performance of the di�erent communication facilities in J-SEAL2.

4.2 Channels

In the JavaSeal kernel [42, 11] synchronous message passing through named

channels is the only inter-agent communication mechanism. This model only

supports direct communication between seals that are neighbours in the seal

hierarchy. If two neighbour seals issue matching send and receive communi-

cation o�ers, the kernel passes the message from the sender to the receiver.

Details about the channel matching algorithm can be found in [43, 42, 11].

With the aid of channel communication it is possible to achieve complete

mediation. This means that it is possible to intercept all messages going in

and out of an agent. Channel communication ensures that a parent seal is

able to isolate a child completely from other seals.

J-SEAL2 supports the same channel operations as JavaSeal, but o�ers

some improvements, such as optional timeouts for all synchronous channel

primitives, as well as an asynchronous send operation.

4.3 Limitations of Channels

Even though channel communication is simple and conceptually clear, it is

the most signi�cant performance bottleneck inherent to the JavaSeal archi-

tecture.

If a seal wants to talk to another one, which is neither parent nor direct

child, intermediate seals have to actively take part in the communication.

Since threads cannot cross seal boundaries, communication requires dedi-

cated threads in intermediate seals for message routing. Therefore, commu-

nication between seals involves thread switches proportional to the commu-

nication partners' distance in the seal hierarchy. Furthermore, every com-

CHAPTER 4. COMMUNICATION 33

munication act requires entering the JavaSeal kernel, which is also expensive

due to synchronization.

Analyzing applications using JavaSeal revealed that for the vast majority

of communications intermediate seals do not interpose any security policy,

but they only forward communication requests. For instance, an agent man-

ager seal grants a child agent access to a service. For this purpose, the agent

manager has to start a thread receiving the child agent's messages from a

certain channel and forwarding them to the service.

In addition to this ineÆciency, the blocking nature of channel communica-

tion complicates the JavaSeal programming model signi�cantly. The failure

of a communication partner results in the deadlock of the other partner, un-

less channel communication is used very carefully. In e�ect, each seal has

to run dedicated supervisor threads stopping those threads that are blocked

executing channel primitives for a long period of time. This programming

technique is error-prone, cumbersome, and incurs high overhead. Further-

more, it is diÆcult to determine useful values for timeouts, since they also

depend on the varying system load.

The J-SEAL2 communication model is designed to overcome all of these

de�ciencies inherent to JavaSeal channel communication.

4.4 External References

Inside a single JVM method invocation on objects enables extremely fast

communication between di�erent software components without involving any

thread switches. However, direct sharing of object references with distinct

protection domains breaks the security properties mentioned before and com-

plicates per protection domain resource accounting (CPU time and memory

allocation) enormously.

The problem is that an object reference once handed out to a foreign pro-

tection domain can be neither retracted nor invalidated. While the reference

is alive, it prevents the shared object from being reclaimed by the garbage

collector. Furthermore, a thread calling methods of a shared object may be

stopped asynchronously leaving the shared object in an inconsistent state.

The J-SEAL2 kernel introduces external references in order to overcome

the communication ineÆciency of JavaSeal without sacri�cing security. Ex-

CHAPTER 4. COMMUNICATION 34

ternal references allow indirect sharing1 of objects between di�erent seals

that are not necessarily neighbours in the hierarchy. An external reference

acts as a capability to invoke methods on a shared object. A seal creates an

external reference for some object and passes it out to another seal in order

to share the object. External references encapsulate references to shared ob-

jects. They are tracked by the J-SEAL2 kernel and may be invalidated at

any time deleting the encapsulated object references.

When an external reference is passed to another seal, the receiver gets

a copy of the communicated external reference. The sender may invalidate

that copy (as well as, in a synchronized way, recursively all further copies of

that copy) at any time with immediate e�ect, i.e., threads calling methods

through the copy immediately leave the callee's protection domain and throw

an appropriate exception in the caller's domain. This property clearly dis-

tinguishes external references from capabilities in the J-Kernel [44]. Details

of the external reference communication model are presented in the following

subsections.

4.4.1 Terminology

We use the following terms to describe the semantics of external reference

communication:

Shared object: A Java object (of arbitrary type) for which an external

reference has been created.

Owner of a shared object: The seal which has created an external refer-

ence in order to share an object maintained by the seal.

Strong reference: A reference to a Java object. While there are strong

references to an object, the object cannot be garbage collected.

Weak reference: A Java 2 reference object encapsulating an object refer-

ence [34]. Weak references do not prevent objects from being reclaimed

by the garbage collector.

1The properties of di�erent sharing models (copying, direct sharing, and indirect shar-

ing) are explained in [3].

CHAPTER 4. COMMUNICATION 35

4.4.2 Properties of External References

In the following we explain the semantics of external references in J-SEAL2.

We de�ne rules for the creation, scope, and copying of external references,

as well as for method invocation and for external reference invalidation.

Creation

CR-1: External references are created explicitly for objects to be shared

with other seals. Initially, an external reference is valid (i.e., it can be

used to invoke methods on the shared object).

CR-2: External references encapsulate strong references to shared objects.

As long as strong references to a valid external reference are maintained,

the shared object behind the external reference is kept alive. This

property ensures that the owner of a shared object need not take care

to keep the shared object alive. If it has created and passed out an

external reference, the shared object cannot be garbage collected as

long as the external reference is alive and remains valid.

CR-3: The J-SEAL2 kernel keeps track of all external references available

in each seal. This property is important for implicit external reference

invalidation during seal termination (see invalidation rule I-5). In order

not to prevent external references from being reclaimed, the J-SEAL2

kernel employs weak references to track external references.

Scope

S-1: External references are completely decoupled from the seal hierarchy.

Seals need not be in any particular relationship (like parent{child) in

order to share objects with the aid of external references.

S-2: External references cannot be used as remote references, they are valid

only within the J-SEAL2 platform where they have been created. When

a seal is wrapped (serialized for transmission over the network), it loses

all external references it holds.

CHAPTER 4. COMMUNICATION 36

Copying

CO-1: External references can be passed around in the seal hierarchy. They

can be contained in capsules, which requires a dedicated copying algo-

rithm for external references.

CO-2: When an external reference is copied, the copy is registered in the

original external reference. We call the original external reference an-

cestor of the copy, whereas the copy is denoted as descendant of the

original. An external reference may have any number of descendants.

A copy always has exactly one ancestor. Only external references that

are created explicitly for a shared object have no ancestor (see creation

rule CR-1). Thus, an external reference and its direct and indirect

descendants form a tree hierarchy decoupled from the seal hierarchy.

CO-3: Since an ancestor must not prevent its descendants from being re-

claimed by the garbage collector, the ancestor employs weak references

to the descendants. On the other hand, a descendant uses a strong

reference to its ancestor preventing the ancestor from being garbage

collected as long as the descendant is alive. As we will see in the

section about external reference invalidation, it is crucial that the com-

plete ancestor path of an external reference remains accessible while

the external reference itself is alive.

CO-4: If a seal receiving an external reference already maintains an ancestor

of the received external reference, it reuses the ancestor.2 This property

ensures that the ancestor path of an external reference is acyclic; it

is closely related to the shortest path in the hierarchy to the owner

of the shared object. We will see the importance of this property in

the section about external reference method invocation. Note that if

2Copying rule CO-4 allows us to use external references as capabilities that cannot

be forged. For instance, consider a GUI window manager service o�ering operations for

window opening and closing. The open primitive returns an external reference to a new

window, which can be used to manipulate the window contents. Furthermore, this external

reference acts as a capability to close the corresponding window. The close operation

requires an external reference to an open window as an argument. The implementation

of the window manager service may use Java reference comparison in order to decide

whether a given external reference refers to an open window. Language safety in Java [46]

guarantees that it is not possible for any seal to guess a capability for a window belonging

to another seal. Therefore, a seal cannot close the windows of other seals.

CHAPTER 4. COMMUNICATION 37

an external reference is passed to a neighbour seal, the `shortest path

property' guarantees that it is suÆcient to check whether the receiving

seal already maintains the external reference's ancestor (if it has an

ancestor). Therefore, ensuring that the ancestor path has no cycles

imposes only minimal overhead.

Method invocation

M-1: An external reference allows threads to invoke methods on a shared

object concurrently, no matter in which seal the shared object resides.

The caller has got to specify a method signature and to provide a

capsule containing the arguments. The result is encapsulated, too. In

e�ect, using capsules for arguments and for results ensures that there is

no direct sharing of object references with di�erent protection domains.

M-2: External references contained in an argument or result capsule3 are

treated specially: In order to ensure that the ancestor path of an ex-

ternal reference is related to the shortest path in the hierarchy between

the owner of the shared object and the seal receiving the external ref-

erence, the J-SEAL2 kernel simulates a step-by-step forwarding of the

external reference on that shortest path.

M-3: If an external reference is invalidated (see the invalidation rules be-

low), threads calling through that external reference immediately leave

the callee seal (i.e., the owner of the shared object) and throw an ap-

propriate exception in the caller seal. This property is crucial in order

to allow immediate memory reclamation when the owner of the shared

object is removed from the hierarchy (see invalidation rule I-5). Note

that this property allows shared objects to o�er blocking operations

without delaying protection domain termination.

M-4: While a thread executes a method of a shared object in a foreign seal,

the reference to the thread object is not available. This property is an

important detail, since it prevents the shared object from storing the

3Note that allowing external references to be passed over existing external reference

connections (either as method argument or as return value) enables callback interfaces.

For instance, in J-SEAL2 the local naming service is accessed via external references. The

result of a successful query is an external reference to the requested service.

CHAPTER 4. COMMUNICATION 38

thread reference in its state (i.e., direct sharing with di�erent seals)

and from manipulating (e.g., stopping) that thread.

M-5: While a thread executes a method of a shared object, the seal the

thread belongs to may stop the thread asynchronously. Therefore, the

shared object must be designed in a way that does not allow a calling

thread to leave the shared object in an inconsistent state. Currently,

there are two options to ensure the consistency of a shared object: The

shared object may use `self-communication' with channel primitives

[43, 42, 11] in order to dispatch a request to a thread belonging to

the owner of the shared object, or it may employ Inter Agent Method

Calling (IAMC), a high-level communication protocol implemented on

top of external references (see section 4.6).

Invalidation

I-1: A seal may invalidate an external reference it holds at any time. This

operation atomically invalidates all direct and indirect descendants.

I-2: A seal may atomically invalidate all external references it holds together

with their descendants. This operation explains why the J-SEAL2 ker-

nel keeps track of all external references in each seal (see creation rule

CR-3).

I-3: Having passed out an external reference to a particular neighbour, a seal

may atomically invalidate that copy4 and its descendants. That is, a

seal passing out an external reference has always the right to invalidate

the forwarded external reference.

I-4: A seal may atomically invalidate all copies of external references passed

out to a certain neighbour seal.

I-5: When a seal is removed from the hierarchy, invalidation operation I-

2 is triggered implicitly5 in order to ensure complete and immediate

4Note that passing out a an external reference does not imply that the receiver gets a

copy of the external reference. If it already maintains an ancestor, it reuses the ancestor.

However, the invalidation operation only works on copies.
5Note that also descendants of external references that had been passed through the

terminated seal are invalidated, because the ancestor path is cut.

CHAPTER 4. COMMUNICATION 39

Legend

Seal A

Seal CSeal B

O

Rb

Ra

Rc

Descendant

Shared Object

Figure 4.1: J-SEAL2 external references.

memory reclamation. That is, after a seal has terminated, no other seal

can keep shared objects alive inside the terminated protection domain.

I-6: When a thread executing a method of a shared object invalidates the

external reference it is calling through, the invalidation operation (I-1,

I-2, I-3, or I-4) is guaranteed to complete before the thread throws an

exception. This property also holds, if the thread terminates the seal

it belongs to (see invalidation rule I-5).

4.4.3 Examples of External References

The following examples illustrate how external references support direct com-

munication between seals that are not in a parent{child relationship (see

�gure 4.1).

We have three di�erent seals, seal A is parent of seals B and C. Seal B

provides a shared object O, which shall be made accessible to seal A. For

CHAPTER 4. COMMUNICATION 40

this purpose, seal B creates an external reference Rb for the shared object O

and passes it to seal A (either via channel operations or invoking a method

of an existing external reference). Seal A receives Ra, which is a copy of Rb.

As long as Ra remains valid, seal A is able to directly invoke methods on the

shared object O.

Now assume seal A decides to grant seal C direct access to the shared

object O. Thus, seal A forwards Ra to seal C, which receives the copy Rc.

Now all three seals may concurrently call methods on the shared object O.

Seal B may invalidate Rb (Rb, Ra, and Rc) or only the descendant of Rb

passed to seal A (Ra and Rc). Seal A may invalidate Ra (Ra and Rc) or only

the descendant of Ra forwarded to seal C (Rc), but not Rb. Seal C may only

invalidate Rc.

Now assume seal C invokes a method on shared object O passing Rc

within the argument capsule. Thus, the J-SEAL2 kernel has to copy Rc

step-by-step on the shortest path in the hierarchy to seal B (i.e., C{A{B).

Copying Rc to seal A yields Ra, since seal A already holds the ancestor of

Rc. Seal B receives Rb in the argument capsule, as it already maintains the

ancestor of Ra.

4.5 Implementation Issues

Since in J-SEAL2 there is no direct sharing of object references between

di�erent protection domains, all communication involves the copying of mes-

sages. J-SEAL2 employs Java serialization to create a deep copy of an ob-

ject graph of serializable objects. Therefore, only serializable objects can be

passed between di�erent domains. The kernel ensures that a communicated

serialized object graph is deserialized within the target domain. Thus, the

deserialized object graph only refers to classes from the receiving domain.

As serialization and deserialization are expensive operations, J-SEAL2

o�ers optimizations for certain object types that are frequently used in com-

munication messages, such as Java primitive types, arrays of primitive types,

as well as strings. Primitive types do not include object references, they can

be passed within simple wrappers. The classes for arrays of primitive types

and for strings are always loaded by the system class-loader, thus we need

not take care whether they are copied within the target domain. For arrays

of primitive types, we can use array cloning or System.arraycopy(). For

strings, there is a special constructor taking another string as argument. All

CHAPTER 4. COMMUNICATION 41

these optimizations are performed by the J-SEAL2 kernel, they are trans-

parent to the programmer. Performance measurements6 show that capsule

optimizations improve the performance of capsule creation and opening by a

factor of 20{50.

External references complicate the serialization and deserialization of ob-

ject graphs. External references are not serializable, but they have to be

treated in a very special way. Since the kernel keeps track of external refer-

ences and their copies, they must be separated from the rest of the serialized

object graph. The kernel employs a dedicated copying algorithm for external

references, details can be found in section 4.4.2 and in [5].

The J-SEAL2 implementation of communication channels ensures that a

message is copied to the receiving protection domain only after a communi-

cation match. Send and receive requests are treated as equivalent commu-

nication o�ers. They are inserted in kernel queues residing in the same pro-

tection domain as the issuing thread. The kernel checks neighbour domains

for matching o�ers. Only if the search is successful, the kernel copies the

message to the receiving domain. This implementation is very di�erent from

traditional message passing, where a sender directly inserts a message into

the receiver queue. By separating sender and receiver queues the J-SEAL2

kernel ensures that an agent cannot mount a denial-of-service attack against

a neighbour domain by �lling its receiver queues with messages, eventually

causing the receiver to exceed its memory limits.

4.6 Inter Agent Method Calling (IAMC)

IAMC is an eÆcient and convenient communication framework based on

external references. Following the J-SEAL2 micro-kernel design, IAMC is

built on top of the kernel, it is a library package and may be replaced or

supplemented by other communication frameworks.

IAMC aims at simplifying access to services provided by other seals. In

J-SEAL2 all service registration protocols and service access are based on

IAMC. In order to export a certain service a seal has got to specify a Java

interface de�ning the service methods. Furthermore, the seal must provide

an appropriate implementation of the interface, either an object of a class

6In this benchmark we created capsules consisting of a string, a byte array, and a long

value. The sizes of the string and the array were chosen independently between 0 and

1000.

CHAPTER 4. COMMUNICATION 42

implementing the interface, or the seal itself may implement some service in-

terfaces. The seal creates an IAMC dispatcher, which can be made accessible

to foreign seals via external references. An IAMC dispatcher accepts service

requests from external reference method invocations and dispatches them to

the service implementation.

The IAMC dispatcher controls the concurrency factor of the service by

managing a set of worker threads to handle incoming requests. This approach

also solves the problem that a method invocation through an external refer-

ence may leave the shared object in an inconsistent state, if the calling thread

is stopped asynchronously. A calling thread simply inserts the request into

a queue managed by the dispatcher and blocks until the request has been

processed or an exception has been thrown by a worker thread. Thus, the

shared object is only accessed by threads belonging to the same seal. Only

the request queue has to be protected in order to ensure state consistency.

The IAMC dispatcher implementation solves this problem employing `self-

communication' with channel primitives [43, 42, 11].

Clients of a service receive external references to the IAMC dispatcher.

For convenience, they may wrap an external reference into a stub class im-

plementing the service interface. The IAMC stub is responsible for argu-

ment/result marshalling/unmarshalling (argument capsule creation and re-

sult capsule opening) and providing the method signature necessary for ex-

ternal reference method invocation. J-SEAL2 o�ers a generator tool, which

automatically creates IAMC stubs for Java interfaces.

Summing up, IAMC is an easy to use communication framework, which

takes advantage of external references. It allows to shortcut communication

paths in the seal hierarchy7, while at the same time all seals on the shortest

path in the hierarchy between the client and the service seal have the right to

break the communication with immediate e�ect (external reference invalida-

tion). Implicit external reference invalidation during seal termination ensures

that clients are not blocked in�nitely, if the communication partner fails or

moves away (in the case of a mobile agent). Thus, IAMC communication is

inherently mobility aware.

7In e�ect, IAMC communication involves exactly two thread switches (handing over the

request to a worker thread and passing back the result to the calling thread), independent

of where the communication partners are located in the seal hierarchy.

CHAPTER 4. COMMUNICATION 43

n 1 2 3 4 5 6 7 8 9 10 11 12

Sync. ch. 90 170 251 350 431 521 601 691 781 871 961 1051

Async. ch. 30 60 90 120 150 181 220 240 281 320 451 581

Ext. ref. 10 10 10 10 10 10 10 10 10 10 10 10

IAMC 100 100 100 100 100 100 100 100 100 100 100 100

Table 4.1: J-SEAL2 communication performance (time in microseconds).

4.7 Evaluation

In this section we compare the performance of the various communication

mechanisms o�ered by the J-SEAL2 platform. For this purpose, we measured

the time it takes to transmit a capsule containing a Java long integer over n

seal boundaries (1 � n � 12)8.

All measurements were collected with Sun's Java 2 Software Development

Kit, Standard Edition, version 1.3.0 (Hotspot Client VM) on a Windows NT

4.0 workstation (Intel Pentium II, 400MHz clock rate). In order to avoid

errors in measurement due to garbage collection or method compilation, we

show the median of 101 measurements.

The results in table 4.1 con�rm that for external reference and IAMC

the communication costs are independent of where the communication part-

ners are located in the seal hierarchy, whereas channel communication over-

head increases linearly with the communication partners' distance. Since

IAMC involves exactly two thread switches, the IAMC communication costs9

are roughly comparable with channel communication over two seal bound-

aries. Asynchronous channel communication is up to 3 times faster than

synchronous channel communication, because it allows the JVM scheduler

to avoid some thread switches. The deterioration of performance of asyn-

chronous channel communication for n > 10 is due to increased scheduler

activity (preemption).

Considering a typical J-SEAL2 con�guration for a large-scale electronic

commerce application (e.g., see �gure 1.1 on page 11), an agent has to com-

municate at least over four seal boundaries in order to access a service (agent{

8In this benchmark we were repeating each capsule transfer 1000 times, since in Java

the accuracy of measurement is 1 millisecond.
9Note that the IAMC measurements include the time to create, to transfer, and to

open a capsule, as well as the time for dispatching and method invocation, while we only

measured capsule transfer time for channel and external reference communication.

CHAPTER 4. COMMUNICATION 44

sandbox{sandbox manager{RootSeal{service). In this case, external refer-

ence communication is 35 (12) times faster than synchronous (asynchronous)

channel communication. Even though IAMC is a high-level communication

protocol, it is still 3.5 (1.2) times faster than synchronous (asynchronous)

channel communication. Note that if a service invocation returns a result

object, the overhead for channel communication is about twice as high as

stated in table 4.1, whereas external reference and IAMC communication do

not incur any additional overhead.

Chapter 5

Resource Control

5.1 Introduction

Operating system kernels provide mechanisms to enforce resource limits for

processes. The scheduler assigns processes to CPUs reecting process pri-

orities. Furthermore, only the kernel has access to all memory resources.

Processes have to allocate memory regions from the kernel, which veri�es

that memory limits for the processes are not exceeded. Likewise, a mobile

agent kernel must prevent denial-of-service attacks, such as mobile agents

allocating all available memory. For this purpose, accounting of physical re-

sources (i.e., memory, CPU, network bandwidth, etc.) and logical resources

(i.e., number of threads, number of protection domains, etc.) is crucial.

Whereas J-SEAL2 [5, 6] is primarily designed for mobile agents, the ap-

proach described here is in many ways applicable to other distributed pro-

gramming paradigms practiced in Java, since the mobile agent paradigm

is very comprehensive in terms of involved issues and technologies. The

techniques employed in J-SEAL2 could thus greatly improve stability and

security in the execution of Java Applets, or traditional distributed appli-

cations, where strong protection domains and resource control mechanisms

are often needed. Further potential use cases include technologies such as

World-Wide-Web server extensions (Java Servlets [35]) and Java application

servers (e.g., Enterprise JavaBeans containers [33]).

The great value of resource control is that it is not restricted to serve as

a base for implementing security mechanisms. Application service providers

may, for example, need to guarantee a certain quality of service, or to cre-

ate the support for usage-based billing, in order to amortize investments in

45

CHAPTER 5. RESOURCE CONTROL 46

hardware and software set at customers' disposal. The basic kernel extensions

described in this chapter will be necessary to schedule the quality of service

or to support the higher-level accounting system, which will bill the clients

for consumed computing resources. This thesis is however restricted to the

kernel extensions that were necessary to add resource control to J-SEAL2;

faithful to the micro-kernel approach, J-SEAL2 relegates to the higher levels

the mechanisms which do not absolutely have to be part of the kernel.

This chapter is organized as follows. The next section presents the de-

sign goals and the resulting resource control model, and section 5.3 the cor-

responding APIs. Section 5.4 explains our implementation techniques, for

which section 5.5 presents some performance measurements.

5.2 Objectives and Resulting Model

The ultimate objective of this work is to enable the creation of execution

platforms, where anonymous mobile agents, or more general programs, may

securely coexist without harming each other, and without harming their en-

vironment. Examples of such platforms are user-extensible databases [19] or

decentralized e-commerce and trading systems as, for example, in [23]. Java

Applet execution platforms { World-Wide-Web browsers { as well as embed-

ded Java devices also need such guarantees. The desire to deploy this kind

of platforms translates into the following requirements:

� SuÆciently abstract concepts, in order to make mapping of policies

into implementations more straightforward, and with a view to making

resource control and eventual billing more manageable.

� Accounting of low-level, physical resources as well as higher-level, log-

ical resources, such as threads.

� Prevention against denial-of-service attacks, which are based on CPU,

memory, or communication misuse.

� Fair distribution of resources among concurrent domains, even outside

the context of malicious activities.

� Fine-grained load-balancing of mobile agent applications on a cluster

of machines.

CHAPTER 5. RESOURCE CONTROL 47

Since some aspects of resource control are to be manageable by the appli-

cation developer, it is important that the general model integrates well with

the existing J-SEAL2 programming model [5]. The resource control facilities

shall reect the hierarchical system structure. Hierarchical process models

have been used successfully by operating system kernels, such as the Fluke

micro-kernel [17]. The Fluke kernel employs a hierarchical scheduling proto-

col, CPU Inheritance Scheduling [18], in order to enforce scheduling policies.

In this model, a parent domain donates a certain percentage of its own CPU

resources to a child process. Initially, the root of the hierarchy possesses all

CPU resources.

A general model for hierarchical resource control, such as e.g. Quantum

[27], �ts very well to the J-SEAL2 hierarchical domain model. At system

startup the root domain, RootSeal, owns by default all resources the Java

runtime system allocates from the underlying operating system, for example,

100% CPU, the entire virtual memory, unlimited network usage, the max-

imum number of threads the underlying JVM [26] is able to cope with, an

unlimited number of subdomains, etc. Moreover, the root domain, as well as

other domains loaded at platform startup, are considered as completely safe,

and, consequently, no resource accounting will be enforced on them. This

default behavior may however easily be overridden if speci�c con�gurations

should require accounting even for trusted domains.

When a nested protection domain is created, the creator donates some

part of its own resources to the new domain. Figure 5.1 illustrates the way

resources are either shared or distributed inside a seal hierarchy. In the

formal model of J-SEAL2, the Seal Calculus [43], the parent seal supervises

all its subdomains, and inter-domain communication management was the

main concern so far. Likewise, in the resource control model proposed here,

the parent seal is responsible for the resource allocation with its subseals.

This produces a nested structure, where the parent seal is initially the sole

owner of its resources, and it may either share them or dispatch fractions of

them to its subseals. However, the sum of all resources within a protection

domain, e.g., in the Untrusted application of �gure 5.1, remains constant.

Our resource control model stems from further design goals, such as porta-

bility and transparency: the next subsections are dedicated to describing

these.

CHAPTER 5. RESOURCE CONTROL 48

share 8

share

RootSeal

sh
ar

e

Fully trusted domains
(no accounting needed)

Untrusted application8

share
split 50 MB

MEM

split 20 %

15 %

CPU

sp
lit

 75
 %

split 10 M
B

10 MB

40 MB

5 %

CPU

CPU

MEM

MEM

Figure 5.1: Illustration of the general resource control model.

5.2.1 Portability and Transparency

Portability is crucial for the success of any mobile agent platform. There are

already some Java-based systems o�ering resource control facilities, such as

Alta [40] and Ka�eOS [1, 2], which we discussed in chapter 2. However, they

rely on modi�ed Java runtime systems, which are not portable. As a result,

these systems are not suited for large-scale applications that have to support

a wide variety of di�erent hardware platforms and operating systems. Our

goal is to provide a general-purpose model which is not dependent on speci�c

implementation techniques, and to explore primarily completely portable so-

lutions. This entails that we have to cope with certain restrictions and with

performance levels sometimes inferior to those of existing realizations. Our

portable approach will nevertheless show its advantages in the longer term:

our solution will always perform somewhat slower than the fastest JVMs

without resource control mechanisms, but, on the other hand, we will be

able to exploit the latest techniques in Java implementation optimizations,

which will often not be possible with non-portable implementations.

A related important requirement of our resource control model is that

CHAPTER 5. RESOURCE CONTROL 49

unmodi�ed agent applications must be able to execute on our platform. In

other words, resource control must be transparent to applications which do

not explicitly manage their pool of resources.

For portability reasons, it should also be stressed that the goal of this

work is not to implement any kind of real-time guarantee. The resources

that are managed and distributed internally to the JVM are thus entirely

dependent upon what the JVM process itself is given by the underlying

operating system.

5.2.2 Minimal Overhead for Trusted Domains

Since J-SEAL2 is designed for large-scale applications, where a large num-

ber of services and mobile agents are executing concurrently, design and

implementation must minimize the overhead of resource accounting. Some

domains, such as core services, are fully trusted. Their resource consumption

need not be controlled by the kernel.

5.2.3 Support for Resource Sharing

In certain situations protection domains that are neighbours in the hierarchy

may choose to share some resources. In this case, resource limits are enforced

together for a set of protection domains. As a result, resource fragmentation

is minimized. For example, consider a mobile agent creating a subdomain for

a certain task. Frequently, the creating domain does not want to donate some

resources to the subdomain, but it rather prefers to share its own resources

with the subdomain. A property of our approach is that if a domain has

unlimited access to a resource, this means that it is sharing it with RootSeal.

5.2.4 Managed Resources

Within each untrusted protection domain, the J-SEAL2 kernel shall account

for the following resources:

� CPU RELATIVE de�nes the relative share of CPU. It is expressed as a

fraction of the parent domain's own relative share, but takes a slightly

di�erent meaning when the parent itself is a trusted domain; the precise

semantics is exposed in section 5.3.2.

CHAPTER 5. RESOURCE CONTROL 50

� MEM ACTIVE is the highest amount of volatile memory that a pro-

tection domain is allowed to use at any given moment.

� THREADS ACTIVE speci�es the maximal number of active threads

by protection domain at any moment. Uncontrolled creation of threads

has to be avoided, as it results in increased load for the scheduler; it may

even crash the JVM, as there is currently no standard Java construct

allowing one to inquire about the maximum number of threads a JVM

implementation is able to cope with.

� THREADS TOTAL limits the number of threads that may be created

throughout the lifetime of a protection domain, as thread creation is

an expensive (kernel-level) operation.

� DOMAINS ACTIVE speci�es the maximal number of active subdo-

mains a protection domain is allowed to have at any given moment.

This limit is to minimize management overhead inside the kernel by

controlling the complexity of the seal hierarchy at any time.

� DOMAINS TOTAL bounds the number of subdomains that a protec-

tion domain may generate throughout its lifetime, as domain creation

and termination are expensive kernel operations.

Note that the kernel of J-SEAL2 is not responsible for network control.

This is because the micro-kernel does not provide access to the network. In-

stead, network access can be provided by multiple services. These network

services or some mediation layers in the hierarchy are responsible for net-

work accounting according to application-speci�c security policies. Let us

stress that the network is not a special case, since J-SEAL2, thanks to its

homogeneous model, may limit communication with any services, e.g., �le

IO.

Another resource kind that could be expected in the above list of kernel-

managed resources is the total amount of CPU allocated to a given protection

domain throughout its lifetime. It is however not clear what the unit of

measurement should be for this resource, while still preserving a completely

hardware-independent model. The main objective of this kind of resource

accounting would be to prevent applications from inde�nitely cluttering up

platforms; in a heterogeneous set of servers it makes however more sense

to express total lifetime abstractly as the wall clock time elapsed since the

CHAPTER 5. RESOURCE CONTROL 51

application was started, than as the number of consumed CPU cycles. Using

as unit of measurement the amount of executed Java bytecodes, although

portable, was also regarded as too low-level. Measuring wall clock time can

be achieved at the application level, by establishing a controlling domain with

suÆcient rights to kill all misbehaving applications; this is a viable approach,

since in J-SEAL2, when a parent disposes of a child seal, all resources are

guaranteed to be freed properly. Accounting of total CPU time was therefore

discarded from the kernel.

Finally, there is also no such resource as MEM TOTAL, a limit to the

accumulated amount of memory used throughout the lifetime of a protection

domain. It could be needed to prevent the kind of denial-of-service attacks

where a malicious domain creates a lot of dynamic objects in order to keep

the CPU busy with garbage collection. Its implementation would however

require maintenance of an additional counter, which we preferred to avoid.

Instead, J-SEAL2 will take preventive action by charging an abstract amount

of CPU as a compensation for the garbage collection induced by each object

created.

The six basic resource types retained for management by the J-SEAL2

kernel are discussed in more detail in the API section below.

5.3 API

In this section we give an overview of the resource control API provided by

the J-SEAL2 kernel. A detailed speci�cation of the API can be found in [7].

There are 2 kernel abstractions dedicated to resource control: A resource

object of type Res represents a resource of a certain type available for a

protection domain. Resource sets of type ResSet ease the management of

multiple resources. Furthermore, the kernel class Seal, which supports do-

main creation and termination, has been extended to allow a parent domain

to restrict the resources of its children.

5.3.1 De�nitions

In this section we provide some de�nitions, which simplify the description of

the resource control API. In the following de�nitions let S denote an arbitrary

domain in the hierarchy.

CHAPTER 5. RESOURCE CONTROL 52

Root Res object: A root Res object of the domain S is a Res object re-

sponsible for resource control in S. A root Res object is returned by

an invocation of the method getCurrentRes in class Res (for details

see the following section).

Descendant Res object: A descendant Res object D of the domain S is

the result of splitting a root Res object R of S. R is also called the

parent Res object of D. When a descendant Res object is used in a

ResSet object to create a nested domain, it will be used for resource

control in the created child domain.

Note that these de�nitions are relative to the domain S. A descendant

Res object D of the domain S is a root Res object in a child C of S, if D was

in the ResSet object used for creating C. When we use the terms root and

descendant Res objects in the description of a method, we implicitly assume

Res objects of the domain invoking the method.

5.3.2 Class Res

For each type of resource, a protection domain has an associated root Res

object reecting how much of the resource the domain has been granted. A

Res object de�nes a resource limit and provides information on the current

resource usage in order to support resource aware computations. It o�ers

an operation allowing a domain to split up some part of the resource. This

operation yields a new descendant Res object that may be donated to children

domains. The root domain, RootSeal, creates an initial Res object for each

type of resource during startup. RootSeal distributes resources to service

components and to application domains according to a con�guration provided

by the system administrator. Table 5.1 summarizes the interface of a Res

object.

The static method getCurrentRes returns the root Res object for a given

type of resource of the invoking domain. In order to indicate the requested

resource type, the constants CPU RELATIVE, MEM ACTIVE, THREADS ACTIVE,

THREADS TOTAL, DOMAINS ACTIVE, and DOMAINS TOTAL (i.e., relative CPU

share, active memory in bytes, as well as active and cumulative threads

and subdomains) are used. The information, for which type of resource a

Res object is responsible, is permanently associated with the Res object in

order to prevent the programmer from mixing up di�erent types of resources

CHAPTER 5. RESOURCE CONTROL 53

public final class Res {

public static final int

CPU_RELATIVE = 0,

MEM_ACTIVE = 1,

THREADS_ACTIVE = 2, THREADS_TOTAL = 3,

DOMAINS_ACTIVE = 4, DOMAINS_TOTAL = 5;

public static Res getCurrentRes(int type);

public int getType();

public long getLimit();

public long getUsage();

public Res split(long limit);

public void setLimit(long limit);

public void combine();

}

Table 5.1: The Res API.

by mistake. The getType method returns the type of resource a Res object

is representing.

getLimit returns the resource limit of a Res object. A negative value

means that there is no resource limit. Concerning the semantics of the re-

source limit, the relative CPU share (CPU RELATIVE) is treated di�erently

from all other resource types. A relative CPU share of n means that do-

mains created with the corresponding Res object may use at most a fraction

of n

sum of all CPU limits in the system
of the CPU time available to domains with a

CPU limit � 01. getUsage returns the resource consumption of all domains

sharing the same root Res object. A negative value means that the J-SEAL2

kernel does not account for the resource.

As the Res API does not expose any public constructor, the split op-

eration has to be used in order to create descendant Res objects that may

be donated to subdomains. split may be invoked only on root Res objects.

It returns a new descendant Res object responsible for the same type of re-

source as the root Res object, which becomes the parent of the descendant.

1In our current implementation, this resource is controlled by periodic sampling of the

amount of executed bytecode instructions. The precision of the measurement is imple-

mentation dependent; there is indeed a bias induced by the fact that the CPU resource is

not allocated by absolute values, but by relative shares, while in the implementation, the

reference value is the aggregated consumption measured among untrusted domains and is

not, as could be expected, the resource taken as a whole.

CHAPTER 5. RESOURCE CONTROL 54

public final class ResSet {

public static ResSet getCurrentResSet();

public ResSet copy();

public Res getRes(int type);

public void setRes(Res r);

public void combine();

}

Table 5.2: The ResSet API.

The descendant Res object has the resource limit, which was passed to split

as argument, and an initial resource usage of zero. The resource usage of the

parent Res object is incremented by the limit given to the descendant.

The setLimit method provides a mechanism to modify the resource limit

of a Res object. The new resource limit is passed as argument. The resource

usage of the parent Res object is adjusted accordingly. A parent domain may

use descendant Res objects in order to monitor the resource usage of children

domains. With the aid of setLimit, the parent is able to adjust the resource

limits for the children domains.

The combine operation allows to merge Res objects that have been split

before. If it is invoked on a root Res object, combine has no e�ect. If it is

called on a descendant Res object, the descendant is combined with its parent

Res object, i.e., the resource usage of the parent object (if it is accounted

for) is reduced by the limit of the descendant. The descendant Res object

is marked as invalid and cannot be used anymore. Combination is only

possible, if the descendant Res object is not used by any subdomain (i.e.,

all subdomain created with the descendant Res object must be terminated

before).

5.3.3 Class ResSet

A ResSet object o�ers a convenient way to manage all resources given to a

domain. It holds exactly one Res object for each type of resource. Table 5.2

summarizes the public interface of a ResSet object:

The static method getCurrentResSet returns a ResSet object with the

root Res objects of the domain the calling thread is executing in. This

ResSet object may be used to access the individual Res objects of the domain.

The copy method creates a shallow copy of a ResSet object. The copy

CHAPTER 5. RESOURCE CONTROL 55

public class Seal {

public static void unwrap(WrappedSeal wrapped, String sealname,

ResSet resources);

public static void unwrap(WrappedSeal wrapped, String sealname) {

unwrap(wrapped, sealname, ResSet.getCurrentResSet());

}

...

}

Table 5.3: The unwrap methods of class Seal.

contains the same references to Res objects as the original ResSet object.

The getCurrentResSet and copy methods are the only mechanisms allowing

to allocate new ResSet objects. There is no public constructor, because the

API enforces the constraint that a ResSet always holds exactly one Res

object for each type of resource.

The getRes method return the Res object for a given type of resource.

The argument is a resource constant de�ned in the class Res. The setRes

method replaces the Res object in the set, which has the same resource type

as the Res object given as argument. The combinemethod o�ers a convenient

way to invoke combine on all Res objects in the set.

5.3.4 Class Seal

The Seal abstraction provides methods for domain creation (unwrapping)

and removal (wrapping or disposing). Table 5.3 summarizes the unwrap

methods of the Seal class. Other methods are not shown, because they are

not a�ected by the resource control extension.

The unwrap method with 3 arguments requires a wrapped representation

of the subdomain to create (corresponding to the serialized state of a mobile

agent), its name, as well as a ResSet object with the resources for the new

subdomain. The unwrap operation with 2 arguments implicitly shares the

resources of the unwrapping domain with the created child domain.

When a new child domain is created, the parent's DOMAINS ACTIVE and

DOMAINS TOTAL Res objects are charged for the created subdomain, while the

child's resource objects are charged for the CPU time consumed for unwrap-

ping (involving class-loading and linking), for memory allocation, as well as

for the child's initializer thread.

CHAPTER 5. RESOURCE CONTROL 56

long MB = 1024*1024;

ResSet rP = ResSet.getCurrentResSet();

Res cpu = rP.getRes(Res.CPU_RELATIVE);

Res mem = rP.getRes(Res.MEM_ACTIVE);

ResSet rA = rP.copy();

long cpuA = (long)(cpu.getLimit()*0.75);

rA.setRes(cpu.split(cpuA));

ResSet rB = rP.copy();

rB.setRes(mem.split(10*MB));

Seal.unwrap(childA, nameOfChildA, rA);

Seal.unwrap(childB, nameOfChildB, rB);

Table 5.4: Resource control example.

5.3.5 Example

The code fragment in table 5.4 demonstrates how the resource control API is

used to control the resources of children domains. This example corresponds

to the Untrusted application depicted in �gure 5.1 on page 48.

A parent domain, which has limited CPU and memory resources, creates

2 subdomains: One child domain (childA) gets 75% of the parent's CPU

resources and shares the memory resources with the parent, while the other

child domain (childB) receives 10 MB of active memory and shares the CPU

resources with the parent.

5.4 Implementation Issues

In this section we present the techniques we are using for the implementa-

tion of the resource control model discussed in the previous sections. Since

accounting for logical resources, such as active and cumulative threads and

subdomains, requires only minor modi�cations to a few J-SEAL2 kernel prim-

itives, we focus on accounting for physical resources, such as memory and

CPU consumption.

CHAPTER 5. RESOURCE CONTROL 57

5.4.1 No Direct Sharing

Since its initial release the J-SEAL2 kernel has been designed to ease the

integration of resource control facilities. It guarantees accountability, i.e.,

user-visible objects belong to exactly one protection domain. References to

an object exist only within a single domain2, i.e., in J-SEAL2 there is no

direct sharing of object references between distinct domains. Therefore, it is

possible to account each allocated object to exactly one protection domain.

This feature not only simpli�es resource accounting, but it is also crucial for

immediate resource reclamation during domain termination.

5.4.2 Bytecode Rewriting

In our approach we employ bytecode rewriting techniques both for memory

and CPU accounting. This is because it is to our understanding the only

entirely portable way to implement the needed accounting mechanisms. It

is unrealistic to expect the source code of every application to be available

for modi�cation. Moreover, if we want guarantees against denial-of-service

attacks, we cannot rely on foreign code to perform any voluntary self-limiting

operations, whereas if we modify its bytecode before it starts executing, we

can `oblige' it to provide any information needed by the kernel and to obey

any restriction imposed on it by the environment. Instead of rewriting byte-

code for CPU control, the J-SEAL2 kernel might, for example, ask the un-

derlying operating system for information about the CPU consumption of

each thread, but this is possible only when Java threads are directly mapped

into operating system threads. Another approach would be to run a modi-

�ed JVM; the arguments against this are however exposed in section 5.2.1.

A further discussion of existing (and non-portable) approaches is to be found

in chapter 2.

In our implementation, the bytecode of a Java class is modi�ed before it is

loaded by the JVM [26]. Code for memory accounting is inserted before each

memory allocation instruction (for details, see section 5.4.9). CPU account-

ing uses an abstract measure, the number of executed bytecode instructions.

Therefore, code for CPU accounting is inserted in every basic block of code

(details are presented in section 5.4.10).

2The only exception to this rule are Res objects (see section 5.3.2) used for resource

sharing.

CHAPTER 5. RESOURCE CONTROL 58

Rewriting for memory accounting must be done before rewriting for CPU

accounting, because memory accounting inserts additional bytecode instruc-

tions to enforce memory limits, while accounting CPU consumption does not

involve any object allocation.

5.4.3 Domain Types

The resource control model supports trusted domains that have unlimited

access to certain types of resources. For performance reasons, the J-SEAL2

kernel does not account for the consumption of these resources. Regarding

CPU and memory accounting, we distinguish 4 types of domains:

NO-ACC: Domains without memory limit and without CPU control may

execute unmodi�ed Java code, as they do not need to execute any

accounting instructions.

CPU-ACC: Domains without memory limit, but with CPU control have

to execute CPU accounting instructions. However, code for memory

accounting is not required in such domains.

MEM-ACC: Domains with a memory limit, but without CPU control have

to execute memory accounting instructions. However, code for CPU

accounting is not required in such domains.

CPU-MEM-ACC: Domains with a memory limit and with CPU control

have to execute accounting code for memory allocation as well as for

CPU consumption.

5.4.4 Accounting Objects

In MEM-ACC and in CPU-MEM-ACC domains MemAccount objects repre-

sent memory limit and current usage. In CPU-ACC and in CPU-MEM-ACC

domains objects of the type CPUAccount maintain CPU consumption. These

objects are used only by the J-SEAL2 kernel, they are not accessible by user

code. Each thread has associated the MemAccount object and a CPUAccount

object of the domain it is executing in; null values indicate that a do-

main does not need a MemAccount or CPUAccount object. Java thread-local

variables (instances of java.lang.ThreadLocal) are used to implement this

association. The MemAccount and CPUAccount classes o�er a static method

CHAPTER 5. RESOURCE CONTROL 59

getCurrentAccount, which returns the corresponding accounting object of

the domain the calling thread is executing in.

Because access to MemAccount and above all to CPUAccount objects may

be extremely frequent, accessing these objects from thread-local variables in

every method would cause a signi�cant performance penalty3. Therefore,

non-native methods are rewritten in order to pass the necessary accounting

objects as additional arguments. Native methods are excluded from rewrit-

ing, because we cannot account for memory allocated and CPU time con-

sumed by native code. We are relying on modern inter-modular register

allocation algorithms implemented by state-of-the-art JVMs to minimize the

overhead of passing the accounting objects through the whole method call-

graph.

As an example for the rewriting process, consider method a given in

table 5.5. The rewritten4 version of method a for a CPU-MEM-ACC do-

main is given in table 5.6. Here we are only presenting the additional argu-

ments, while the inserted accounting code is discussed in sections 5.4.9 and

5.4.10. In this example, method a receives two additional arguments for the

CPUAccount and MemAccount objects5. The additional arguments are passed

to all invoked methods/constructors (in this example to method b).

void a(int x) {

b(null, x);

}

Table 5.5: Method a before rewriting.

void a(int x, MemAccount mem, CPUAccount cpu) {

b(null, x, mem, cpu);

}

Table 5.6: Method a rewritten for a CPU-MEM-ACC domain.

3In Sun's JDK 1.3 implementation thread-local variables are managed as hash-maps,

i.e., each access to a thread-local variable requires a hash-map lookup.
4For the sake of easy readability, we present rewriting transformations at the Java level,

even though the implementation works at the JVM bytecode level.
5Note that in a CPU-ACC or MEM-ACC domain only one additional argument would

be necessary to hold the accounting object.

CHAPTER 5. RESOURCE CONTROL 60

5.4.5 Callbacks from Native Code

Native code invoking Java methods complicates the resource control imple-

mentation, because the native code is not aware of the accounting objects to

be passed to Java methods as extra arguments. The following three scenarios

of Java method invocation by native code are particularly important:

� Thread creation: The Java runtime system (native code) invokes the

run method of a thread object when a thread is started with the aid

of the start method.

� Static initializers: Static initializers are invoked directly during class-

loading, i.e., they are invoked by native code.

� Reection: The invoke method of java.lang.reflect.Method, as

well as the newInstance method of java.lang.reflect.Constructor

are native methods.

When the thread invoking a Java method from native code has already

set its thread-local accounting objects, it is suÆcient to provide for each

method an additional one with the same signature, which takes the required

accounting objects from thread-local variables and passes them to the rewrit-

ten method. In the rewriting example given in tables 5.5 and 5.6 we have

to supplement the rewritten method with method a in table 5.7. Note that

when a constructor is rewritten according to this scheme, the invocation of

another constructor of the same class or of a constructor of the superclass

has to antecede the lookup of the accounting objects.

void a(int x) {

MemAccount mem = MemAccount.getCurrentAccount();

CPUAccount cpu = CPUAccount.getCurrentAccount();

a(x, mem, cpu);

}

Table 5.7: Solving callbacks from native code.

However, when a new thread starts executing the runmethod, the thread-

local accounting objects have not been initialized yet. As protection domains

in J-SEAL2 do not have direct access to the class java.lang.Thread but

have to employ a safe wrapper class instead [6], the wrapper initializes the

CHAPTER 5. RESOURCE CONTROL 61

thread-local accounting variables with the accounting objects of the protec-

tion domain the new thread belongs to. These objects are passed to the

constructor of the wrapper by the J-SEAL2 kernel.

When a new protection domain is created, the J-SEAL2 kernel allocates

a new initializer thread with the accounting objects for the new domain.

While starting this thread, the thread wrapper initializes the thread-local

accounting variables and starts to load the classes of the new protection

domain. The class-loading already happens in the accounting context of the

new domain.

5.4.6 Shared Classes

As discussed in section 3.3.2.1, the J-SEAL2 kernel distinguishes between

shared and replicated classes. Shared classes are loaded by the system class-

loader (they exist only once in the JVM), while replicated classes, such as

the classes of a mobile agent, are loaded by the class-loader of a protection

domain (they are reloaded in each domain). All JDK classes as well as most

classes from the J-SEAL2 kernel are shared. Certain J-SEAL2 library classes

that are frequently used may be shared as well, in order to avoid the overhead

of reloading them multiple times.

In the Java 2 platform [34] it is not possible to load a JDK class with

a class-loader di�erent from the system class-loader. Depending on the

JVM implementation, certain core JDK classes (e.g., java.lang.Object,

java.lang.String, java.lang.Throwable, etc.) are assumed to exist only

once in the system. Replicating such classes crashes the JVM. Furthermore,

the class-loader API of JDK 1.2 speci�es that all classes in the java package

or in a subpackage thereof can only be de�ned by the bootstrap class-loader.

As a consequence, we have the following constraints for accounting for re-

sources used in the JDK:

� All JDK classes are loaded by the system class-loader; there is only a

single version of each JDK class.

� Since the same JDK class may be used in di�erent types of domains

(NO-ACC, CPU-ACC, MEM-ACC, or CPU-MEM-ACC), JDK classes

have to include the accounting code for all domain types.

� The rewriting of JDK classes must be o�-line (e.g., during the installa-

tion of the J-SEAL2 platform), because JDK classes are always loaded

CHAPTER 5. RESOURCE CONTROL 62

by the system class-loader, which we cannot modify.

The example in table 5.8 shows how method a given in table 5.5 would

be rewritten, if it were de�ned in a shared class. A method with the same

signature as the original method dispatches to the appropriate implementa-

tion, when it is invoked from native code. For each type of domain, there

is a di�erent method implementation. In this example we distinguished the

signature of the NO-ACC implementation from the dispatcher method by

adding a dummy argument of type NoAccount. The compilers of state-of-

the-art JVMs may be able to remove this useless argument.

void a(int x) {

MemAccount mem = MemAccount.getCurrentAccount();

CPUAccount cpu = CPUAccount.getCurrentAccount();

if (cpu == null)

if (mem == null) a(x, (NoAccount)null);

else a(x, mem);

else

if (mem == null) a(x, cpu);

else a(x, mem, cpu);

}

void a(int x, NoAccount _no) { b(null, x, _no); }

void a(int x, CPUAccount cpu) { b(null, x, cpu); }

void a(int x, MemAccount mem) { b(null, x, mem); }

void a(int x, MemAccount mem, CPUAccount cpu) { b(null, x, mem, cpu); }

Table 5.8: Rewriting methods in shared classes.

Alternatively, it is possible to rename the NO-ACC implementation. This

approach complicates rewriting, since a table of renamed methods of shared

classes has to be maintained, but it has the advantage that replicated classes

of trusted domains (e.g., classes of an authenticated, fully trusted agent) can

be rewritten very eÆciently, because only method signatures in the constant-

pool [26] are a�ected, whereas the method code remains unchanged (in con-

trast, passing the extra NoAccount argument requires additional bytecode

instructions).

5.4.7 Optimizations

Rewriting shared classes as discussed in the previous section increases the

code size by more than factor 4. Because the increased code size a�ects

CHAPTER 5. RESOURCE CONTROL 63

the memory requirements and the startup overhead of the J-SEAL2 kernel

(more methods may be compiled), the following optimizations are being im-

plemented:

� A leaf method, which does not allocate any objects, requires neither

MEM-ACC nor CPU-MEM-ACC implementations (i.e., the NO-ACC

implementation can be used in MEM-ACC domains, and CPU-MEM-

ACC domains can employ the CPU-ACC implementation).

� As a generalization of this optimization, we do not need to provide

MEM-ACC and CPU-MEM-ACC implementations for methods with-

out any memory allocation instructions, if they invoke only methods

satisfying the same condition.

� We can optimize the code of shared kernel classes by hand in order to

minimize the overhead for resource control (e.g., when allocating a set

of objects, we can account for the total size of these objects at once).

5.4.8 Rewriting Abstract Methods

There are two di�erent approaches for dealing with abstract Java methods

(including interface methods) in shared types (classes or interfaces):

1. Abstract methods are not rewritten. This approach simpli�es the

rewriting process, but invoking a method on a variable of a (static)

type, in which the called method is declared as abstract (e.g., interface

method call), incurs high overhead, because the dispatching method

has to access the accounting objects from thread-local variables.

2. Abstract methods are rewritten. For each abstract method in a shared

class, the type signatures of the 4 possible implementations (NO-ACC,

CPU-ACC, MEM-ACC, CPU-MEM-ACC) are added. As a result, a

class implementing the abstract method has to provide all 4 implemen-

tations, even if the implementing class is a replicated one (in this case,

3 implementations may be dummies). This approach allows to pass the

accounting objects directly to the invoked method, no matter whether

it is an interface method or not.

The J-SEAL2 implementation follows the second approach, since method

calls on interface types are very frequent in Java programs. Thus, we can

avoid the invocation of the dispatcher method.

CHAPTER 5. RESOURCE CONTROL 64

5.4.9 Memory Control

Memory control has to limit the allocation of heap memory, as well as the

size of the execution stacks of running threads.

5.4.9.1 Heap

Enforcing memory limits requires exact pre-accounting for memory resources,

i.e., an overuse exception is raised before a thread can exceed the memory

limit of the domain it is executing in. In contrast to JRes [14], which main-

tains a separate memory limit for each thread, J-SEAL2 enforces a single

memory limit for a multithreaded domain or even for a set of domains in the

case of resource sharing.

Because a single MemAccount object has to maintain the memory con-

sumption and limit of a set of domains sharing the same memory resources,

access to the MemAccount must be synchronized. Furthermore, accounting

for an object as well as its allocation and initialization has to be an atomic

action.

Before the object is allocated, J-SEAL2 ensures that the memory limit is

not exceeded and updates the MemAccount. If the memory allocation fails, if

the constructor raises an exception, or if the allocating thread is terminated

asynchronously, we have to ensure that the modi�cation of the MemAccount

is undone. Otherwise, other threads or even other domains (using the same

MemAccount) could su�er from memory leakage. Details on the rewriting

scheme for memory allocation instructions can be found in [7].

When the garbage collector reclaims an object, we have to update the

MemAccount that has been charged for this object. For this reason, the

MemAccount maintains a weak reference for each allocated object, which does

not prevent the object from being reclaimed. When an object referenced by

a weak reference is garbage collected, the weak reference is enqueued in a

reference queue, which can be polled by the MemAccount implementation

(for details see [7]).

Object Size The size of an object is calculated from the number of �elds

for each Java basic type, the number of �elds holding object references, a

constant for the object overhead, as well as a constant for the accounting

overhead (i.e., the overhead for maintaining a weak reference to the allo-

cated object). For arrays, the actual size must be computed from the array

CHAPTER 5. RESOURCE CONTROL 65

dimensions available on the execution stack. Depending on the Java run-

time system, the overhead for array objects may be larger than for non-array

objects, because of the size information stored within arrays.

Constants for the object overhead and for the size of Java basic types

and object references are managed in a con�guration �le by the system ad-

ministrator. Since in general the administrator does not know the object

representation of the underlying Java runtime system, a tool helps to ap-

proximate these constants (e.g., by avoiding garbage collection and measur-

ing the di�erence of allocated memory before and after creating certain types

of objects). However, object alignment is not taken into account.

Optimizations While our approach works for objects as well as for arrays,

we are also implementing an optimization for non-array objects: Similar to

JRes [14], in each allocated object we store a reference to the corresponding

MemAccount object. Rewritten �nalizers are responsible for updating the

MemAccount when an object is reclaimed by the garbage collector. Thus, we

can avoid the signi�cant overhead of maintaining weak references, which is

particularly important for small objects.

For arrays, such an optimization cannot be implemented in pure Java.

However, in practice the overhead for accounting for allocated arrays is not

a serious problem, because arrays frequently are large objects (compared to

the accounting overhead they cause).

5.4.9.2 Stack

The computation of recursive methods may rapidly blow up the execution

stack of a thread without allocating a single object. Especially if domains are

allowed to create large numbers of threads, an attacker could easily create

a bunch of threads, and in each thread create a very deep call-stack forcing

the system to use large amounts of memory (precious memory, which cannot

be garbage collected until the methods return).

Most proposals for resource control in Java, like e.g. JRes [14], do not

take the memory consumption of the execution stacks into account. Our

implementation supports control of stack memory as an optional feature.

During the installation, the system administrator has to decide whether stack

control shall be enabled. When untrusted domains are allowed to create only

a small number of threads and the underlying JVM allocates execution stacks

CHAPTER 5. RESOURCE CONTROL 66

that cannot expand dynamically, it is suÆcient to charge the MemAccount for

the maximum stack size6 when a thread is created.

However, if the JVM allows execution stacks to grow up signi�cantly, spe-

cial e�ort is necessary in order to limit the size of the stack. For this purpose,

we rewrite non-native methods to pass an additional counter, indicating the

amount of memory the thread is allowed to use on the stack. On method

entry, this counter has to be reduced by the number of local variables and

the maximum stack consumption of the invoked method7. For each method,

this information is available in the Java class-�le [26]. If the counter becomes

negative, an appropriate exception is raised. The counter can be an integer

that is passed by value. Therefore, a good register allocator will help to keep

the overhead small. As a further optimization, leaf methods (i.e., methods

that do not invoke any other method) may omit the check of the counter.

5.4.10 CPU Control

For CPU control, we are accounting the number of executed bytecode instruc-

tions for each thread running in a CPU-ACC or CPU-MEM-ACC domain.

A high-priority scheduler thread, which is part of the J-SEAL2 kernel, exe-

cutes periodically in order to ensure that assigned CPU limits are respected.

The scheduler thread calculates the number of executed bytecode instruc-

tions for each set of domains sharing a CPU limit by summing up the CPU

consumption of all threads executing in a domain in the set. The scheduler

compares the number of executed bytecodes with the desired schedule. If a

set of domains has exceeded its CPU limit, the priorities of threads executing

in these domains are lowered.

5.4.10.1 Class CPUAccount

In contrast to a MemAccount object, which is shared by all threads execut-

ing in a domain with memory accounting, each thread running in a domain

6In order to approximately determine the maximum stack size of a JVM imple-

mentation, we employ a calibration program executing a recursive method until a

StackOverflowError occurs. The maximum stack size corresponds to the product of

the maximum recursion depth and the size of a stack frame of the recursive method.
7A Just-in-Time compiler will completely remove the Java stack when it creates code

for a register machine. Nevertheless, the number of local variables and the maximum stack

consumption of a method can be used as an approximation for the size of a stack frame

of the method.

CHAPTER 5. RESOURCE CONTROL 67

with CPU accounting has associated its own CPUAccount object. Since CPU

accounting occurs very frequently, it is important that multiple threads do

not have to synchronize on a common accounting object. As only the sched-

uler thread makes any scheduling decisions, it is suÆcient to account for

each thread separately. The scheduler is responsible for accumulating the

accounting data of all threads executing in a set of domains sharing a CPU

limit.

A CPUAccount object simply maintains an integer counter, which is up-

dated by the thread owning the object. Table 5.9 shows some parts of the

CPUAccount implementation8. Because the scheduler thread has to read the

counter value, we are using a volatile variable in order to force the JVM to

immediately propagate every update from the working memory of a thread

to the master copy in the main memory [20, 26].

public final class CPUAccount {

public volatile int usage;

...

}

Table 5.9: The CPUAccount implementation.

In general, updating the counter requires loading the usage �eld of the

CPUAccount object from memory (it is volatile), incrementing the loaded

value accordingly, and storing the new value in the memory. A counter

update requires about 6 bytecode instructions.

5.4.10.2 Scheduler

In this section we describe how the scheduler thread computes the CPU con-

sumption of a set of domains, and how it employs di�erent JVM priority

levels in order to prevent CPU overuse. However, we do not present a partic-

ular scheduling algorithm, because we are still experimenting with di�erent

policies.

For each CPUAccount object, the scheduler thread always stores the value

of the counter it has read most recently. The scheduler calculates the dif-

ference between the current value and the previously stored value in order

8For instance, we omitted the static getCurrentAccountmethod mentioned in section

5.4.4.

CHAPTER 5. RESOURCE CONTROL 68

to determine the amount of bytecode instructions executed during the last

time-slice (because of the lack of synchronization, the scheduler must not re-

set any CPUAccount object). If a thread has not existed before, the scheduler

assumes the previously stored value to be zero. When a thread terminates,

its CPUAccount object is not disposed of immediately, but it is maintained

until the scheduler has examined it.

The scheduler has to deal with an overow in the counter of a CPUAccount

object. The size of the counter must be large enough so that its full range

cannot be used in a single time-slice. For current JVMs and a reasonably

small time-slice, a Java int is suÆcient. However, in future high-performance

systems, CPUAccount objects may have to maintain long values9.

We are using di�erent JVM priority levels to control the CPU consump-

tion of individual domains. As protection domains in J-SEAL2 do not have

direct access to the class java.lang.Thread (they have to use a safe wrapper

class instead [6], which does not o�er any mechanism to change the priority

of a thread), a user-level thread cannot raise its own priority.

Even though the Java language speci�cation [20] does not de�ne any

scheduling policy, current JVM implementations respect assigned thread pri-

orities. Many JVMs employ �xed priority scheduling, where a low-priority

thread cannot execute, if there is a high-priority thread ready to run. The

J-SEAL2 kernel uses the distinct JVM thread priority levels as follows:

� MAX PRIORITY: The maximum priority is reserved to JVM internal

tasks, such as handling weak references. J-SEAL2 does not run any

threads with the maximum priority.

� MAX PRIORITY-1: J-SEAL2 uses this priority level for kernel-level

operations in order to prevent priority inversion, i.e., when a high-

priority thread is waiting for an exclusive kernel lock (see section 3.2)

because of a low-priority thread T executing in kernel mode, the priority

of T is temporarily boosted until thread T releases the kernel lock.

� MAX PRIORITY-2: This priority level is used by the J-SEAL2 sched-

uler thread.

� NORM PRIORITY{MIN PRIORITY10: The scheduler assigns these

9For a long variable, the volatile declaration is crucial, because some JVMs do not

treat non-volatile long values atomically [26].
10In this description we assume that NORM PRIORITY < MAX PRIORITY-2.

CHAPTER 5. RESOURCE CONTROL 69

priority levels to threads according to the CPU consumption of the

corresponding domain and the assigned CPU share. Threads that are

executing in NO-ACC or in MEM-ACC domains are always assigned

NORM PRIORITY. If a domain exceeds its CPU limit, the priorities

of its threads are reduced (or at least the priorities of those threads

overusing the CPU). If a domain does not consume its assigned CPU

resources, the priorities of its threads may be increased again (but never

exceeding NORM PRIORITY). We are experimenting with di�erent

scheduling algorithms regarding the history of CPU consumption.

5.4.10.3 Rewriting Algorithm

In the description of the rewriting algorithm we use the following de�nition of

an accounting block, which is related to the concept of a basic block of code.

In order to minimize the accounting overhead, we are considering blocks of

maximal length. An accounting block is a bytecode sequence ful�lling the

following constraints:

� If a bytecode instruction, which is neither a method/constructor in-

vocation nor a JVM subroutine invocation, changes the control-ow

non-sequentially (e.g., method return, exception raising, branch, JVM

subroutine return, etc.), it must be the last instruction in the account-

ing block. That is, with the exception of method/constructor and JVM

subroutine invocations, only the last bytecode instruction in the block

may change the control-ow non-sequentially. A method invocation

does not terminate an accounting block, because otherwise the average

block size would be reduced signi�cantly, as method invocations are

very frequent in object-oriented programs.

� Only branches to the begin of the block are allowed. There is no byte-

code instruction branching to another instruction in the same method,

which is not the �rst one in its block. Furthermore, the �rst instruc-

tion of an exception handler must be always the �rst instruction in its

block.

The bytecode rewriting algorithm involves the following 4 steps (an eÆ-

cient implementation may perform multiple steps together):

CHAPTER 5. RESOURCE CONTROL 70

1. Method/constructor invocations are rewritten to pass the CPUAccount

object as extra argument. Because the CPUAccount is always the last

argument11, it can be pushed onto the stack immediately before the

method/constructor invocation instruction.

2. An accounting block analysis (similar to a basic block analysis in tra-

ditional compilers) partitions the method code into a set of accounting

blocks. Each block has an attribute indicating the accounting size of

the block. Initially, this attribute holds the number of bytecode in-

structions in the block12. Furthermore, a control-ow graph with the

accounting blocks as nodes has to be constructed, if optimizations are

to be performed in order to minimize the accounting overhead. With-

out any optimizations, accounting instructions have to be inserted into

every block.

3. Optimizations, such as those presented in following section, analyze

the control-ow graph in order to detect situations where acounting

for multiple di�erent blocks may be combined. The optimizations may

decrement the accounting size attribute of one block and add it to

the accounting size of another block. If the accounting size of a block

becomes zero, it does not require any accounting instructions.

4. For every block with a positive accounting size, accounting instructions

are inserted at the begin of the block. The only exception to this rule is

the �rst block in a constructor: The invocation of another constructor

of the same class or of the superclass has to antecede the accounting

code. The included instructions add the accounting size of the block

plus the number of inserted accounting instructions to the CPUAccount

object. For performance reasons, updates of the CPUAccount object

are not synchronized.

This approach ensures that a thread is charged for at least the number

of bytecode instructions it executes. For each accounting block, a thread is

11Since rewriting for memory accounting is done before rewriting for CPU control, the

MemAccount argument is passed always before the CPUAccount object.
12In order to improve the accuracy of measurement, the J-SEAL2 administrator may

con�gure a weighting of bytecode instructions (integer values) according to their complex-

ity. To simplify matters, we assume that all bytecode instructions have a weighting of

1.

CHAPTER 5. RESOURCE CONTROL 71

charged for the number of instructions in the block, before it executes these

instructions (pre-accounting). When an instruction, which is not the last

one in its accounting block, raises an exception, the thread has been charged

for more instructions than it has consumed. However, since the number of

executed bytecode instructions is only an approximation of the exact CPU

consumption, and because exception handling is expensive on many JVM

implementations, this possible inexactness does not pose any problem.

5.4.10.4 Optimizations

In order to minimize the accounting overhead, the rewriting algorithm may

perform certain optimizations. Since CPU accounting is closely related to

pro�ling and tracing of programs, pro�ling techniques can help to insert

accounting instructions in a way to minimize the accounting overhead [4].

If classes are rewritten o�-line, such as shared JDK classes (see section

5.4.6), the optimization algorithm may perform some complex and time-

consuming analysis. However, for replicated classes, only simple optimiza-

tions are possible, since these classes are rewritten on-line. In the following

paragraphs we present some simple rules that are well suited for on-line op-

timization.

In the following optimization O1 we assume that the accounting block B

has n (n > 0) predecessors Ai (1 � i � n) in the control-ow graph. We

denote the accounting size attributes of B and Ai as b and ai.

O1: If all Ai are di�erent from B, and for each Ai the only successor is B,

then all ai are incremented by b and b is set to zero.

For the following optimizations O2 and O3 we assume that the accounting

block A has n (n > 0) successors Bi (1 � i � n) in the control-ow graph. We

denote the accounting size attributes of A and Bi as a and bi, the minimum

accounting size min bi as bmin, and the maximum accounting size max bi as

bmax.

O2: If all Bi are di�erent from A, and for each Bi the only predecessor is

A, then a is incremented by bmin and all bi are decremented by bmin.

Consequently, the value of at least one bi becomes zero.

O3: If all Bi are di�erent from A, and for each Bi the only predecessor is

A, and the di�erence bmax � bmin does not exceed a given threshold T ,

CHAPTER 5. RESOURCE CONTROL 72

then a is incremented by bmax and all bi are set to zero. Less formally:

If the values of the accounting size attributes of successor blocks are

not too much di�erent, the common predecessor block accounts for the

longest successor block. This optimization is an aggressive version of

rule O2. The threshold controls the aggressiveness of this optimiza-

tion. A threshold T means that a thread executing a block Bi may be

charged for up to T bytecode instructions, which it did not execute.

In general, T should not be smaller than the number of bytecode in-

structions necessary to update the CPUAccount object (a thread would

be charged for the update instructions, if the optimization was not

applied). In order to �nd e�ective values for the threshold, we can

perform static analysis of typical Java programs (the smallest value T

allowing to avoid a signi�cant fraction of the accounting code).

The optimization rules O1, O2, and O3 aim at combining the accounting

for a set of blocks that represent conditional statements, but they do not

allow to remove the accounting code from loops. For instance, rules O1 and

O2 (or alternatively, O1 and O3) may be applied to optimize the accounting

for if-else statements. However, these rules are not suÆcient to reduce the

accounting overhead for if statements without a matching else. Therefore,

we are working on further optimizations.

In general, multiple optimization rules can be applied to a given control-

ow graph. The order of application is important, since it may a�ect the

quality of the accounting code. Most importantly, the optimization algo-

rithm must ensure termination. In particular, certain loops allow an in�nite

application of rule O1. The following heuristics help to guide the optimiza-

tion process:

� An optimization rule may be applied only if the application increases

the number of blocks with an accounting size attribute of zero. Since

the number of blocks in a method is �nite, obeying this rule ensures

termination of the optimization algorithm.

� Optimization O1 shall be applied before optimizations O2 and O3.

� Optimization O3 shall be applied before optimization O2. There is

no need to apply optimization O2, if optimization O3 (which is more

aggressive) succeeds on a certain node in the control-ow graph.

CHAPTER 5. RESOURCE CONTROL 73

� If there are leaf nodes in the control-ow graph, they should be consid-

ered �rst, afterwards their predecessor nodes, etc.

While optimizations O1, O2, and O3 aim at removing accounting code

from certain blocks, the following rule O4 helps to reduce the overhead of

accounting by caching the counter maintained by the CPUAccount in a lo-

cal variable. This optimization improves performance only for certain JVM

implementations (measurements are given in section 5.5). Optimization O4

must be considered after application of the rules O1, O2, and O3.

O4: In general, a block with a positive accounting size requires accounting in-

structions to load, update, and store the usage �eld of the CPUAccount

object (see section 5.4.10.1). We introduce a local variable localUsage

caching the value of the usage �eld in order to avoid reloading this �eld

in every accounting block. The following algorithm marks exactly those

accounting blocks that have to reload the usage �eld of the CPUAccount

object. All other blocks may directly update the localUsage variable

and propagate the new value to the usage �eld of the CPUAccount

object.

� Initially, we mark the �rst block in the method, in each JVM

subroutine, and in each exception handler.

� If a block contains a method/constructor invocation, all of its

successors in the control-ow graph are marked.

� If a block with an accounting size attribute of zero is marked, all

of its successors have to be marked as well.

The algorithm terminates, if no further blocks can be marked.

5.4.11 Accounting for Garbage Collection

In order to prevent denial-of-service attacks by causing the garbage collector

to consume a considerable amount of CPU time (e.g., an attacker may create

a lot of garbage without exceeding its memory limit), the J-SEAL2 kernel has

to account for the time spent by the garbage collector. Only CPU-MEM-ACC

domains can be charged for the garbage they produce, because accounting

for garbage collections requires the information, which domain has allocated

a certain object (such information is not available in NO-ACC or CPU-ACC

CHAPTER 5. RESOURCE CONTROL 74

domains), and because the time spent by the garbage collector a�ects the

CPU consumption of a domain (CPU consumption is not measured in NO-

ACC or MEM-ACC domains).

Since the exact CPU time spent by the garbage collector is not known, we

are using an abstract measure. The J-SEAL2 administrator de�nes a rough

approximation of the number of bytecode instructions required to reclaim

an object. Before an object is allocated, the J-SEAL2 kernel charges the

CPUAccount object of the allocating thread. That is, a domain has to `pay'

for the garbage it eventually will produce at the time it `buys' an object.

This simple approach has the advantage that a CPU-MEM-ACC domain is

charged for all garbage it produces, even if the domain has already terminated

when some objects are reclaimed.

5.4.12 Compensating for Native Code

With the aid of bytecode rewriting techniques, it is not possible to account

for memory allocation and CPU consumption in native code. Untrusted

applications are not allowed to bring native code libraries into the system.

Concerning JVM-provided standard operations, the J-SEAL2 kernel tries to

compensate for resources used by native code and prevents untrusted domains

from using certain functionality leading to a signi�cant resource consumption

by native code. In the following we describe some important cases of resource

consumption in native code and how J-SEAL2 solves them:

� Class-loading: The Java runtime system manages an internal table

of loaded classes. Memory for compiled methods is allocated by the

Just-in-Time compiler, which is usually implemented in native code.

However, the set of classes untrusted domains (e.g., mobile agents)

are allowed to access is limited and known to the J-SEAL2 kernel.

Therefore, the kernel accounts for the classes using an approximation,

which is proportional to the size of the class-�les.

� Deserialization: J-SEAL2 uses Java serialization in order to create

messages to be transferred across domain boundaries. When the re-

ceiving domain opens a message, it is being deserialized using the

class-loader of the receiving domain to resolve class names. The class

java.io.ObjectInputStream employs native methods to allocate ob-

jects without invoking their constructors. J-SEAL2 solves this hurdle

CHAPTER 5. RESOURCE CONTROL 75

by storing the amount of objects for each type, which is part of the

serialized object graph, in the message. The receiver performs resource

checks before deserializing the message. Note that we are not directly

storing the size of the message, because the message may be deserialized

on a di�erent host using a JVM with a distinct object representation

(e.g., consider a mobile agent carrying a message to another location).

� Object cloning: Java supports a way to create a shallow copy of an

object of a type implementing the interface java.lang.Cloneable.

The shallow copy is allocated by a native method. A simple solution

is to forbid untrusted domains to use object cloning. Another some-

what more complicated approach is to rewrite invocations of the clone

method accordingly.

� Reection: The Java reection API provides a mechanism to indi-

rectly create a new instance of a class. The newInstance method of

the class java.lang.reflect.Constructor is native. J-SEAL2 pre-

vents untrusted domains from using the reection API. However, note

that objects allocated by a constructor invoked with the aid of the

newInstance method would be accounted for (see section 5.4.5).

5.5 Evaluation

Because the integration of our resource control model in J-SEAL2 is still in

progress, we are currently not able to provide performance and scalability

evaluations of real applications running in a J-SEAL2 environment with re-

source control. Nevertheless, in this section we present some performance

measurements proving that the overhead due to accounting is acceptable on

modern JVM implementations.

While in J-SEAL2 the overhead for memory control is comparable to

the overhead caused by JRes13 [14], the overhead of CPU control based on

bytecode rewriting techniques has to be examined carefully, because such an

approach has not been used before.

JRes [14] uses native code for CPU accounting, although the authors

mention that CPU accounting could be accomplished with the aid of byte-

13For an application allocating a new object every 250 bytecode instructions, the over-

head for memory control is less than 18%, if no memory limit is exceeded.

CHAPTER 5. RESOURCE CONTROL 76

code rewriting techniques. The authors argued that the resulting execution

time would be prohibitive when a reasonable degree of accuracy was to be

achieved. However, our initial performance measurements show that the

overhead due to our completely portable implementation of CPU accounting

is not prohibitive on modern JVM implementations14.

We have implemented a bytecode rewriting tool that performs the nec-

essary transformations of Java classes to support resource control. The tool

was designed to add resource accounting instructions into arbitrary Java ap-

plications, to create an extended version of the JDK, and to modify mobile

agent applications in J-SEAL2. Our current bytecode rewriting tool supports

o�-line transformations of arbitrary Java classes.

There are several low-level bytecode engineering frameworks written in

Java (e.g., BCA [24], JOIE [13], BIT [25]), as well as higher-level frameworks,

such as e.g. Javassist [12]. Our bytecode rewriting tool is based on BCEL

(Byte Code Engineering Library, formerly called JavaClass) [15], which al-

lows bytecode manipulations of Java classes and is also entirely written in

Java. We chose BCEL since it is one of the most mature bytecode intru-

mentation frameworks and provides a powerful and intuitive API that is well

adapted for our requirements.

We measured the standard SPEC JVM98 benchmarks [38] on a Linux

platform (Intel Pentium III, 733MHz clock rate, 128MB RAM, Linux kernel

2.2.16) with IBM's JDK 1.3 implementation, which includes one of the best

Just-in-Time compilers available today. We measured the overhead due to

CPU accounting in three di�erent con�gurations:

� Ubench-Ujdk: Unmodi�ed benchmarks on an unmodi�ed JDK.

� Rbench-Ujdk: Rewritten benchmarks on an unmodi�ed JDK.

� Rbench-Rjdk: Rewritten benchmarks on a rewritten JDK15.

For each measurement, table 5.10 shows the execution time of the bench-

mark in seconds (rounded to 3 decimal places), as well as the speedup of

the original code compared to the rewritten version (rounded to 2 decimal

14We are not measuring the overhead for CPU control incurred by the scheduler, as it

can always be kept small by choosing an appropriate time-slice.
15Modern JVMs allow to run user-de�ned library classes with the -Xbootclasspath

option.

CHAPTER 5. RESOURCE CONTROL 77

Benchmark Ubench-Ujdk Rbench-Ujdk Rbench-Rjdk

227 mtrt 5,823 (1,00) 7,336 (1,26) 7,685 (1,32)

202 jess 7,779 (1,00) 9,145 (1,18) 11,590 (1,49)

201 compress 19,130 (1,00) 23,156 (1,21) 23,468 (1,23)

209 db 26,740 (1,00) 27,777 (1,04) 31,352 (1,17)

222 mpegaudio 8,694 (1,00) 12,425 (1,43) 12,575 (1,45)

228 jack 8,184 (1,00) 8,771 (1,07) 11,487 (1,40)

213 javac 14,150 (1,00) 15,618 (1,10) 22,853 (1,62)

Geometric Mean 11,286 (1,00) 13,296 (1,18) 15,514 (1,37)

Table 5.10: SPEC JVM98 benchmarks measuring the overhead of CPU ac-

counting (time in seconds).

places). All results represent the median of 101 di�erent measurements. Fur-

thermore, we also computed the geometric mean for each con�guration. We

rewrote about 520 Java class-�les for the CPU-aware version of the SPEC

JVM98 benchmarks, and about 5400 class-�les for the extended version of

the JDK.

The results in table 5.10 show that the overhead due to CPU accounting

is about 40%, if we rewrite applications as well as the whole JDK. With

an unmodi�ed JDK, the overhead can be halved. Note that we did not

apply any optimizations to reduce the accounting overhead. Since the im-

plementation of the optimization algorithm is still in progress, we could not

evaluate the performance of the optimized rewritten code with the standard

JVM98 benchmarks. Thus, we measured the following well-known micro-

benchmarks, which we rewrote by hand:

Fib: This is the recursive algorithm for the calculation of �bonacci numbers.

We used this benchmark to calculate the 35th �bonacci number.

Sort: This is bubble-sort, an iterative sorting algorithm for arrays. It con-

sists of 2 nested loops, where the inner loop exchanges 2 adjacent array

elements, if they are not in the desired order. We used this benchmark

to sort an array of 10000 int values in ascending order. Initially, the

input array was sorted in descending order.

Table 5.11 summarizes our measurements, which were collected on a Win-

dows NT 4.0 workstation (Intel Pentium II, 400MHz clock rate) with 3 di�er-

ent JVM implementations. In order to minimize the impact of compilation

CHAPTER 5. RESOURCE CONTROL 78

Sun JDK 1.2.2 IBM JDK 1.3

Classic Hotspot Classic

(JIT) Server 2.0 (JIT)

Fib original 1031 (1,00) 1032 (1,00) 991 (1,00)

rewritten 1773 (1,72) 1502 (1,46) 1522 (1,54)

O3 1432 (1,39) 1232 (1,19) 1131 (1,14)

Sort original 1212 (1,00) 1352 (1,00) 782 (1,00)

rewritten 2434 (2,01) 2564 (1,90) 2323 (2,97)

O1+O3 1752 (1,45) 2143 (1,59) 1623 (2,08)

O1+O3+O4 1513 (1,25) 2294 (1,70) 1543 (1,97)

Table 5.11: Micro-benchmarks measuring the overhead of CPU accounting

(time in milliseconds).

and garbage collection, all results represent the median of 5 di�erent mea-

surements. For each measurement, table 5.11 shows the execution time of

the benchmark in milliseconds, as well as the speedup of the original code

compared to the rewritten version. We measured code rewritten without

any optimizations, as well as the code resulting from the application of the

optimizations rules presented in section 5.4.10.4.

The �bonacci benchmark consists of 5 accounting blocks. Optimization

O3 with a minimum threshold Tmin = 11 allows to combine accounting for

the whole method in the �rst block, i.e., this optimization avoids 80% of the

accounting code. Because the optimized �bonacci method accounts for all

instructions in the �rst block of the method, optimization rule O4 cannot

reduce the accounting overhead anymore.

Our measurements for the recursive �bonacci method show that our op-

timizations allow to reduce the accounting overhead to 14{19% on mod-

ern JVM implementations, such as Sun's Hotspot VM and IBM's Classic

VM. These results also indicate that the overhead of passing the additional

CPUAccount argument is reasonably small.

The bubble-sort method comprises 10 accounting blocks. A combination

of the optimization rules O1 and O3 with a minimum threshold Tmin = 6

allows to remove the accounting code from 5 blocks, i.e., these optimizations

avoid 50% of the accounting code. Furthermore, the optimization O4 can be

applied to all accounting blocks but the �rst one in the method.

The bubble-sort benchmark shows that optimization rule O4 is bene�cial

only on some JVM implementations, such as Sun's and IBM's Classic VMs,

CHAPTER 5. RESOURCE CONTROL 79

whereas on Sun's Hotspot VM this rule has a bad impact on the performance.

While the performance on IBM's Classic VM su�ers signi�cantly from the

volatile CPUAccount counter (removing the volatile declaration reduces the

accounting overhead drastically), the performance impact of the volatile vari-

able is rather small on Sun's Hotspot VM. Nevertheless, for our benchmark

programs, IBM's JVM implementation o�ers the best overall performance in

absolute terms.

Chapter 6

Conclusion

This chapter concludes the thesis. Section 6.1 presents the current state

of implementation of the J-SEAL2 mobile agent system, section 6.2 gives

a glimpse on future investigations, and section 6.3 summarizes the main

contributions of this thesis.

6.1 State of Implementation

The �rst version of the J-SEAL2 kernel was completed in autumn 1999. It

supported the eÆcient external reference communication model (see section

4.4), but like JavaSeal [42, 11], it did not provide any mechanisms for resource

control. After an extensive period of testing, the stable kernel was packaged

and released in January 2000. This release included some exemplary service

components, such as a network service for agent migration, a graphical user

interface service based on a HTML browser component enabling agents to

interact with users, as well as some simple IO services. In early 2000 we

pro�led benchmarks and demo applications running under J-SEAL2. Our

measurements revealed some hotspots in the kernel, such as the kernel locking

mechanism explained in section 3.2.

After some considerable optimization e�orts, we released the current ver-

sion of the J-SEAL2 kernel in March 2000. This release, which has been

evaluated and tested by many researchers throughout the world, has proven

to be highly stable and eÆcient. Recently, this version of the J-SEAL2 ker-

nel has been used for the implementation of an agent-based workow trading

80

CHAPTER 6. CONCLUSION 81

package description classes lines of code bytes

seal.sys kernel API 13 2304 22481

seal.sys.exception exception classes 12 137 2031

seal.sys.extref external references 4 921 6866

seal.sys.directive directives parser 8 3154 34406

seal.sys.kernel internal kernel classes 20 2590 32352

seal.sys.kernel.caps optimized capsule classes 20 1675 13342

seal.sys.loader class-loader and veri�er 7 1280 14554

seal.sys.util utility classes 3 300 3808

seal.framework.iamc Inter Agent Method Calling 3 507 7252

seal.framework.init service registration protocol 1 137 2287

seal.framework.interf local service registry 7 275 7056

total 98 13280 146435

Table 6.1: J-SEAL2 core components.

architecture1 [29, 30, 31].

Table 6.1 summarizes the core components of the current J-SEAL2 re-

lease. For each package of the kernel and of the libraries, the table gives

a short description, the number of classes and interfaces, the number of

lines of code including full JavaDoc documentation and comments, as well

as the size of the compiled class-�les in bytes. For the agent program-

mer, only the libraries and the packages seal.sys, seal.sys.exception,

and seal.sys.extref are available. All other packages are used only in-

ternally by the J-SEAL2 kernel. A minimal con�guration for devices with

limited resources may be obtained by omitting the libraries and the pack-

ages seal.sys.extref, seal.sys.directive, and seal.sys.kernel.caps.

However, in such a con�guration it is not possible to employ the eÆcient ex-

ternal reference communication model.

Readers interested in getting an evaluation version of the J-SEAL2 plat-

form, including network and GUI services, developer documentation, as well

as some small demonstration applications, may contact the author by E-

mail2.

1Detailed information on this project is available via WWW at URL: http://

anaisoft.unige.ch/
2The author's current E-mail address is w.binder@coco.co.at.

CHAPTER 6. CONCLUSION 82

6.2 Future Work

Since autumn 2000 we are working on the resource control model for J-SEAL2

together with the TiOS group at the University of Geneva. The design phase

was �nished in October 2000, a recent article comprises the resulting model

[8]. Initial performance measurements proving the feasibility of our approach

are given in section 5.5.

We have implemented a bytecode rewriting tool for o�-line rewriting of

the JDK and arbitrary Java applications in order to evaluate the perfor-

mance impact of CPU accounting. The tool is not yet complete, as memory

accounting and optimizations to reduce the performance penalty of CPU

accounting are not fully implemented. Rory Vidal, a student at the Uni-

versity of Geneva who is preparing his diploma thesis, has implemented the

bigger part of the bytecode rewriting tool. Together with Jarle Hulaas and

Alex Villaz�on, co-designers of the resource control model, we are adapting

the J-SEAL2 micro-kernel for resource control and integrating the resulting

bytecode rewriting tool into the kernel's class-loader.

Regarding CPU control, we are experimenting with di�erent scheduling

algorithms in order to �nd the best trade-o� between accounting accuracy

and little overhead. Concerning the CPU accounting scheme with its many

optimization tricks, we have to show that no denial-of-service attack will

get unnoticed, and that a client will not be charged for much more than

it actually consumed. Moreover, we are also considering an additional im-

plementation of the J-SEAL2 architecture on top of implementations of the

Real-Time Speci�cation for Java [9], which contains certain concepts that

can be used for resource control.

Also on our immediate todo-list is the development of high-level pro-

gramming tools in order to support a friendlier event noti�cation mechanism

than the overuse exceptions generated by the J-SEAL2 kernel. User-speci�ed

thresholds should enable applications to receive warnings in a timely manner

before the actual overuse happens.

For a high-level programming model, it is also important to have a sim-

ple uniform mechanism to control all kinds of resources. Whereas the re-

source control API presented in section 5.3 only deals with kernel-managed

resources, the high-level model has to include resource control for service

access (e.g., network and �le IO), which is based on an extension of the com-

munication model of chapter 4. This extension provides a homogeneous API

CHAPTER 6. CONCLUSION 83

to associate security policies with external references, which can be used, for

example, to limit the size of communication messages, to restrict the number

of messages, or to limit the communication bandwidth.

Other important features to be o�ered in a future J-SEAL2 release include

remote con�guration and administration without disruption of the agent plat-

form. We are integrating Alex Villaz�on's meta-programming model [41] into

the J-SEAL2 kernel, which can be used, for instance, to provide a exi-

ble architecture for debugging and monitoring mobile agent applications. A

graphical user interface will allow to monitor and con�gure multiple J-SEAL2

platforms from a single place. A load-balancing service will help to maintain

server clusters for large-scale applications.

6.3 Summary

We have presented design and implementation issues that must be addressed

by Java-based mobile agent platforms. Security, portability, and high per-

formance are crucial for the success of a mobile agent system in large-scale

distributed commercial applications. For security reasons, a mobile agent

system has to be structured in a similar way as an operating system, where

the kernel is separated clearly from all other parts of the system. The kernel

is responsible for protection, communication, protection domain termination,

and resource control.

The J-SEAL2 mobile agent system is based on a micro-kernel architec-

ture providing the necessary security features for commercial mobile agent

applications. The J-SEAL2 kernel is implemented in pure Java, thus it is

portable over di�erent operating systems and hardware platforms. J-SEAL2

o�ers strong protection domains and safe domain termination with immedi-

ate resource reclamation.

The J-SEAL2 micro-kernel supports a new communication model, al-

lowing eÆcient communication in a hierarchy of protection domains. The

communication model ensures security, it prevents direct sharing of object

references with distinct protection domains, and ensures that communication

paths may be invalidated at any time. A high-level communication protocol

implemented on top of the kernel supports convenient Inter Agent Method

Calling (IAMC). Performance measurements prove that J-SEAL2 communi-

cation incurs only small overhead and scales well.

In order to prevent denial-of-service attacks, currently we are integrating

CHAPTER 6. CONCLUSION 84

a new resource control model into the J-SEAL2 kernel, covering physical re-

sources, such as CPU and memory, as well as logical resources, like threads

and subdomains. In order to maintain complete compatibility and portabil-

ity, the implementation is based on bytecode rewriting techniques. Initial

performance measurements back our approach.

As part of this thesis, the author designed and implemented the current

release of the J-SEAL2 kernel, including the external reference communica-

tion model, and developed techniques enabling portable resource control in

Java.

Acknowledgements

Many thanks to my PhD supervisors Rudolf Freund and Andreas Krall, who

supported me throughout my study, for enlightening discussions and com-

ments on earlier drafts; to Klaus Rapf for contributing many ideas and for

enabling my research on mobile agent systems in his company; to Jarle Hu-

laas and Alex Villaz�on for a fruitful collaboration on the design and imple-

mentation of the resource control model; to Rory Vidal for his work on a

bytecode rewriting tool for CPU accounting; to Jan Vitek for contributing

elegant solutions to some diÆcult problems; to Ciar�an Bryce for inspiring

discussions regarding the communication model; to Julien Francioli and Pa-

trik Mihailescu for helpful comments on early drafts dealing with techniques

for resource control.

Bibliography

[1] G. Back and W. Hsieh. Drawing the red line in Java. In Seventh IEEE

Workshop on Hot Topics in Operating Systems, Rio Rico, AZ, USA,

Mar. 1999.

[2] G. Back, W. Hsieh, and J. Lepreau. Processes in Ka�eOS: Isola-

tion, resource management, and sharing in Java. In Proceedings of the

Fourth Symposium on Operating Systems Design and Implementation

(OSDI'2000), San Diego, CA, USA, Oct. 2000.

[3] G. Back, P. Tullmann, L. Stoller, W. Hsieh, and J. Lepreau. Techniques

for the design of Java operating systems. In Proceedings of the 2000

USENIX Annual Technical Conference, San Diego, CA, USA, June 2000.

[4] T. Ball and J. Larus. Optimal pro�ling and tracing of programs. In Con-

ference Record of the Nineteenth Annual ACM Symposium on Princi-

ples of Programming Languages, ACM SIGPLAN Notices, pages 59{70.

ACM Press, Jan. 1992.

[5] W. Binder. J-SEAL2 { A secure high-performance mobile agent system.

In IAT'99 Workshop on Agents in Electronic Commerce, Hong Kong,

Dec. 1999.

[6] W. Binder. Design and implementation of the J-SEAL2 mobile agent

kernel. In The 2001 Symposium on Applications and the Internet

(SAINT-2001), San Diego, CA, USA, Jan. 2001.

[7] W. Binder, J. Hulaas, and A. Villaz�on. Resource control in J-SEAL2.

Technical Report Cahier du CUI No. 124, University of Geneva, Oct.

2000. ftp://cui.unige.ch/pub/tios/papers/TR-124-2000.pdf.

85

BIBLIOGRAPHY 86

[8] W. Binder, J. Hulaas, A. Villaz�on, and R. Vidal. Portable resource con-

trol in Java: The J-SEAL2 approach. In ACM Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOP-

SLA'01), Tampa Bay, Florida, USA, Oct. 2001.

[9] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and

M. Turnbull. The Real-Time Speci�cation for Java. Addison-Wesley,

Reading, MA, USA, 2000.

[10] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup

Language (XML) 1.0. Web pages at http://www.w3.org/TR/1998/

REC-xml-19980210, Feb. 1998.

[11] C. Bryce and J. Vitek. The JavaSeal mobile agent kernel. In

First International Symposium on Agent Systems and Applications

(ASA'99)/Third International Symposium on Mobile Agents (MA'99),

Palm Springs, CA, USA, Oct. 1999.

[12] S. Chiba. Load-time structural reection in Java. In ECOOP, pages

313{336, 2000.

[13] G. Cohen, J. Chase, and D. Kaminsky. Automatic program transforma-

tion with JOIE. In 1998 USENIX Annual Technical Symposium, pages

167{178, 1998.

[14] G. Czajkowski and T. von Eicken. JRes: A resource accounting interface

for Java. In Proceedings of the 13th Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA-98), vol-

ume 33, 10 of ACM SIGPLAN Notices, pages 21{35, New York, USA,

Oct. 18{22 1998. ACM Press.

[15] M. Dahm. Byte code engineering. In Java-Information-Tage 1999

(JIT'99), Sept. 1999. http://bcel.sourceforge.net/.

[16] F.-X. Le Louarn. JUM, a Java Usage Monitor. Web pages at http:

//www.iro.umontreal.ca/~lelouarn/jum.html.

[17] B. Ford, M. Hibler, J. Lepreau, R. McGrath, and P. Tullmann. Interface

and execution models in the uke kernel. In Proceedings of the Third

BIBLIOGRAPHY 87

Symposium on Operating Systems Design and Implementation (OSDI-

99), pages 101{116, Berkeley, CA, USA, Feb. 22{25 1999. Usenix Asso-

ciation.

[18] B. Ford and S. Susarla. CPU Inheritance Scheduling. In Usenix Associ-

ation Second Symposium on Operating Systems Design and Implemen-

tation (OSDI), pages 91{105, 1996.

[19] M. Godfrey, T. Mayr, P. Seshadri, and T. von Eicken. Secure and

portable database extensibility. In Proceedings of the ACM SIGMOD

International Conference on Management of Data (SIGMOD-98), vol-

ume 27,2 of ACM SIGMOD Record, pages 390{401, New York, USA,

June 1{4 1998. ACM Press.

[20] J. Gosling, B. Joy, and G. L. Steele. The Java Language Speci�cation.

The Java Series. Addison-Wesley, Reading, MA, USA, 1996.

[21] C. Hawblitzel and T. Von Eicken. Tasks and revocation for Java (or, hey!

you got your operating system in my language!). Draft, Nov. 1999. http:

//www.cs.cornell.edu/Info/People/hawblitz/hawblitz.html.

[22] C. Hawblitzel and T. Von Eicken. Type system support for dynamic

revocation. In ACM SIGPLAN Workshop on Compiler Support for Sys-

tem Software, May 1999. http://www.cs.cornell.edu/Info/People/

hawblitz/hawblitz.html.

[23] J. Hulaas, L. Gannoune, J. Francioli, S. Chachkov, F. Sch�utz, and

J. Harms. Electronic commerce of internet domain names using mo-

bile agents. In Proceedings of the Second International Conference on

Telecommunications and Electronic Commerce (ICTEC'99), Nashville,

TN, USA, Oct. 1999.

[24] R. Keller and U. H�olzle. Binary component adaptation. In E. Jul, ed-

itor, ECOOP '98|Object-Oriented Programming, volume 1445 of Lec-

ture Notes in Computer Science, pages 307{329. Springer, 1998.

[25] H. B. Lee and B. G. Zorn. BIT: A tool for instrumenting Java bytecodes.

In Proceedings of the USENIX Symposium on Internet Technologies and

Systems (ITS-97), pages 73{82, Berkeley, Dec. 8{11 1997. USENIX As-

sociation.

BIBLIOGRAPHY 88

[26] T. Lindholm and F. Yellin. The Java Virtual Machine Speci�cation.

Addison-Wesley, Reading, MA, USA, second edition, 1999.

[27] L. Moreau and C. Queinnec. Design and semantics of Quantum: a

language to control resource consumption in distributed computing. In

Usenix Conference on Domain-Speci�c Languages (DSL'97), pages 183{

197, Santa-Barbara, CA, USA, Oct. 1997.

[28] K. Nilsen. Java for real-time. Real-Time Systems Journal, 11(2), 1996.

[29] A. Schacke. Agentenbasierte Realisierung eines f�oderierten Handelssys-

tems f�ur Workowausf�uhrungen. Diploma thesis, IFI, University of

Zurich, 2001.

[30] M. Sch�onho� and H. Stormer. Trading workows electronically: the

ANAISOFT architecture. In Proceedings of Datenbanksysteme in B�uro,

Technik und Wissenschaft (BTW'2001), Oldenburg, Germany, Mar.

2001.

[31] H. Stormer. Task scheduling in agent-based workow. In International

ICSC Symposium on Multi-Agents and Mobile Agents in Virtual Orga-

nizations and E-Commerce (MAMA'2000), Wollongong, Australia, Dec.

2000.

[32] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito,

K. Ishizaki, H. Komatsu, and T. Nakatani. Overview of the IBM Java

Just-in-Time compiler. IBM Systems Journal, 39(1):175{193, 2000.

[33] Sun Microsystems, Inc. Enterprise JavaBeans Technology. Web pages

at http://java.sun.com/products/ejb/.

[34] Sun Microsystems, Inc. JAVA 2 Platform, Standard Edition. Web pages

at http://java.sun.com/j2se/1.3/.

[35] Sun Microsystems, Inc. Java Servlet Technology. Web pages at http:

//java.sun.com/products/servlet/.

[36] Sun Microsystems, Inc. Java Virtual Machine Pro�ler Interface

(JVMPI). Web pages at http://java.sun.com/j2se/1.3/docs/

guide/jvmpi/index.html.

BIBLIOGRAPHY 89

[37] N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A. Hill, R. Jef-

fers, T. S. Mitrovich, B. R. Pouliot, and D. S. Smith. NOMADS: toward

a strong and safe mobile agent system. In C. Sierra, G. Maria, and J. S.

Rosenschein, editors, Proceedings of the 4th International Conference

on Autonomous Agents (AGENTS-00), pages 163{164, NY, June 3{7

2000. ACM Press.

[38] The Standard Performance Evaluation Corporation. SPEC JVM98

Benchmarks. Web pages at http://www.spec.org/osg/jvm98/, 1998.

[39] C. F. Tschudin. Open resource allocation for mobile code. In Proceedings

of The First Workshop on Mobile Agents, Berlin, Germany, Apr. 1997.

[40] P. Tullmann and J. Lepreau. Nested Java processes: OS structure for

mobile code. In Eighth ACM SIGOPS European Workshop, Sintra, Por-

tugal, Sept. 1998.

[41] A. Villaz�on. A Reective Active Node. In H. Yasuda, editor, Active

Networks. Second International Working Conference on Active Networks

(IWAN 2000), volume 1942 of Lecture Notes in Computer Science, pages

87{101, Tokyo, Japan, 2000. Springer-Verlag.

[42] J. Vitek, C. Bryce, and W. Binder. Designing JavaSeal or how to

make Java safe for agents. Technical report, University of Geneva,

July 1998. http://cui.unige.ch/OSG/publications/OO-articles/

TechnicalReports/98/javaSeal.pdf.

[43] J. Vitek and G. Castagna. Seal: A framework for secure mobile compu-

tations. In Internet Programming Languages, 1999.

[44] T. Von Eicken, C.-C. Chang, G. Czajkowski, and C. Hawblitzel. J-

Kernel: A capability-based operating system for Java. Lecture Notes in

Computer Science, 1603:369{394, 1999.

[45] T. Wilkinson. Ka�e - a Java virtual machine. Web pages at http:

//www.transvirtual.com/.

[46] F. Yellin. Low level security in Java. In Fourth International Conference

on the World-Wide Web, MIT, Boston, USA, Dec. 1995.

