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ABSTRACT
This paper outlines an original Computational Grid deploy-
ment protocol which is entirely based on Java, leveraging the
portability of this language for distributing customized com-
putations throughout large-scale heterogeneous networks. It
describes practical solutions to the current weaknesses of
Java in the fields of security and resource control. In partic-
ular, it shows how resource control can be put to work not
only as basis for load balancing, but also to increase the se-
curity and general attractiveness of the underlying economic
model.
Keywords: Grid Computing, Resource Control, Mobile
Code.

1. INTRODUCTION
Grid computing enables worldwide distributed computa-

tions involving multi-site collaboration, in order to benefit
from the combined computing and storage power offered by
large-scale networks. The way an application shall be dis-
tributed on a set of computers connected by a network de-
pends on several factors.

First, it depends on the application itself, which may be
not naturally distributed or on the contrary may have been
engineered for Grid computing. A single run of the applica-
tion may require a lot of computing power. The application
is intended to run several times on different input data, or
few times, but an a huge amount of data. The applica-
tion has at its disposal computational, storage and network
resources. They form a dynamic set of CPUs of different
computing power, of memory stores (RAM and disks) of dif-
ferent sizes, and of bandwidths of different capacities. In ad-
dition, the basic characteristics of the available CPUs, mem-
ory stores and bandwidth are not granted during the whole
computation (a disk with an initial capacity of 512MBytes
when empty, cannot be considered having this capacity when
it is half full). Code and data may be stored at different lo-
cations, and may be distributed across several databases.

This paper was previously published at GSEM’04 (the first international
conference on Grid Services Engineering and Management) Erfurt, Ger-
many, September 27-30, 2004, LNCS vol 3270, M. Jeckle, R. Kowalczyk
and P. Braun (Eds.), Springer Verlag, 2004.

Computation itself may occur at one or more locations. Re-
sults of the computation have to be collected and combined
into a coherent output, before being delivered to the client,
who may wait for it at still another location. The network
topology has also an influence on the feasibility of the dis-
tribution. Centralized topologies offer data consistency and
coherence by centralizing the data at one place, security is
more easily achieved since one host needs to be protected.
However, these systems are exposed to lack of extensibility
and fault-tolerance, due to the concentration of data and
code to one location. On the contrary, a fully decentralized
system will be easily extensible and fault-tolerant, but secu-
rity and data coherence will be more difficult to achieve. A
hybrid approach combining a set of servers, centralizing each
several peers, but organized themselves in a decentralized
network, provides the advantages of both topologies [20].
Finally, policies have to be taken into account. They in-
clude clients and donators (providers) requirements, access
control, accounting, and resource reservations.

Mobile agents constitute an appealing concept for deploy-
ing computations, since the responsibility for dispatching
the program or for managing run-time tasks may be more
efficiently performed by a mobile entity that rapidly places
itself at strategic locations. However, relying completely on
mobile agents for realizing the distribution complicates se-
curity tasks, and may incur additional network traffic.

This paper proposes a theoretical model combining the
use of a trusted, stationary operator with mobile agents,
running inside a secure Java-based kernel. The operator
is responsible for centralizing client requests for customized
computations, as well as security and billing tasks, and for
dispatching the code on the Grid. We exploit the portabil-
ity and networking capabilities of Java for providing sim-
ple mobile software packets, which are composed of a set
of bytecode packages along with a configurable and serial-
izable data object. We thus propose to use what is some-
times called single − hop mobile agents, which, compared
to fully-fledged mobile agents, do not require heavy run-
time support. These agents prevent the operator from be-
coming a bottleneck, by forwarding input code and data to
computation locations and performing some management
tasks. They start the different parts of the computations,
ensure the management and monitoring of the distributed
computations, and eventually collect and combine interme-
diate and final results.

The objective of this model is to propose a realistic deploy-
ment scenario, both from an economic and technical point
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(b) MIMD

Figure 1: Parallelisation

of view, since we describe a setting where providers of com-
puting resources (individuals or enterprises) may receive re-
wards in proportion to their service, and where issues like
performance and security are addressed extensively, relying
on actual tools and environments. While we put emphasis on
being able to support embarassingly parallel computations,
the model is sufficiently general to enable the distribution
of many other kinds of applications.

Section 2 reviews distributed computations, Section 3
presents the model, Section 4 advocates the application of
Java in Grid computing, whereas Section 5 describes the de-
sign and implementation of a secure execution environment,
which constitutes a first necessary step towards the full re-
alization of the model. Finally, Section 6 summarizes some
related approaches, before concluding.

2. DISTRIBUTED COMPUTATIONS
Worldwide distributed computations range from paral-

lelization of applications to more general Grid distributions.

2.1 Parallelization
Distribution of computing across multiple environments

shares similarities with the parallelization of code on a multi-
processor computer. We distinguish two cases, the first one
corresponds to single instruction, multiple data (SIMD),
while the second one corresponds to multiple instruction,
multiple data (MIMD). Figure 1 shows both cases.

In case (a), the client’s host ships the same code, but
with a different accompanying data to multiple locations.
After computation, the different results are sent back to the
client’s host. The final result is simply the collection of the
different results. This kind of distribution is appropriate
for intensive computing on a huge amount of the same type
of data. It corresponds to the distribution realized by the
SETI@home1 experiment that uses Internet connected com-
puters in the Search for Extraterrestrial Intelligence (SETI).
Donators first download a free program. The execution of
the program then downloads and analyzes radio telescope

1http://setiathome.ssl.berkeley.edu/

data. Note that in this case, the downloaded data may come
from a different source.

In case (b), code and data are split into several parts,
then pairs of code and data are sent to several locations.
The result is obtained by a combination (some function) of
the different results.

Such a distribution is suitable for applications that can
be divided into several pieces. This scheme fits the case of
Parabon2. The client defines jobs to be performed. Trans-
parently, the API divides the job into several tasks, on the
client side; a task is made of a code, data, and some control
messages. Tasks are sent to the Parabon server, which then
forwards each task to a donator, using the donator’s CPU
idle time for computing the task. Once the task is achieved,
the server sends back the result to the client, where the API
then combines all results together, before presenting them
to the client.

As a particular case of the MIMD example, code and data
may be divided into several sequential parts. Computation
would occur then in a pipeline-like style, where the next
piece of code runs on the result of the previous computation.

These examples all exploit idle CPU time of the com-
puter participating in the computations. The execution of
the code on the data will ideally occur inside a secure “enve-
lope”, which ensures, on one hand, that the donator cannot
exploit the code, the data and the results of the client; on
the other hand, that the client does not execute malicious
code in the donator’s host. This is however not the case
in practice, since current environments cannot provide such
guarantees. The model proposed here at least partly ad-
dresses this issue (see Section 4).

2.2 Grid
The more general case of distributed computing is pro-

vided by the Grid computing concept which enables collabo-
rative multi-site computation [13]. Grid computing goes be-
yond traditional examples of peer-to-peer computing, since
there is a concern of proposing a shared infrastructure for
direct access to storage and computing resources.

2http://www.parabon.com
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Figure 2: Grid

Figure 2 shows a generic Grid computation, encompassing
the different classes of Grid applications [12]. The client,
requesting the computation, the software to run, the data,
and the results may be located at different sites. The data is
even distributed across two databases. In this example, the
code and the two pieces of data are moved to the donator’s
location, where the computation takes place. The result is
then shipped to the client.

The CERN DataGrid [9] provides an example where
physicists are geographically dispersed, and the huge
amount of data they want to analyze are located worldwide.

3. PROPOSED MODEL
In this section we give an overview of our overall archi-

tecture, we outline our business model, and describe the
different roles of participants in our Grid computing infras-
tructure, as well as their interactions.

3.1 Participating Parties in the Grid Comput-
ing Model

Our model involves 3 distinct parties: the operator of the
Grid, resource donators, and clients. The operator is in
charge of maintaining the Grid. With the aid of a mobile
deployment agent, he coordinates the distribution of appli-
cations and of input data, as well as the collection and in-
tegration of computed results. The operator downloads the
applications, and distributes them to resource donators that
perform the actual computation.

Clients wishing to exploit the Grid for their applications
have to register at a server of the operator before they are
allowed to start computations. During the registration step,
the necessary information for billing is transmitted to the
operator. Afterwards the client is able to send a deployment
descriptor to the operator.

The deployment descriptor comprises the necessary infor-
mation allowing the operator to download the application,
to prepare it for billing and accounting, and to distribute the
application and its streams of input data to different active
resource donators, taking into consideration their current
load. The mobile deployment agent, which is created by the
operator based on the contents of the client’s deployment de-
scriptor and coordinates the distributed client application, is
not bound to a server of the operator; the client may specify
the server to host the deployment agent, or decide to let the
agent roam the Grid according to its own parameters. This
approach improves scalability and ensures that the operator

does not become a bottleneck, because the operator is able
to offload deployment agents from his own computers.

Resource donators are users connected to the same net-
work as the operator (e.g., the Internet) who offer their idle
computing resources for the execution of parts of large-scale
scientific applications. They may receive small payments for
the utilization of their systems, or they may donate resources
to certain kinds of applications (e.g., applications that are
beneficial for the general public). Resource donators register
at the Grid operator, too. They receive a dedicated execu-
tion environment to host uploaded applications. Portability,
high performance, and security are key requirements for this
execution platform. Section 4 gives detailed information on
our platform, which is completely based on the Java lan-
guage. The operator dispatches downloaded applications to
active resource donators. The deployment agent is in charge
of supervising the flows of initial and intermediate data to
and from the resource donators, as well as the final results,
which are passed back to the destination designated by the
client. Allowing the deployment agent to be moved to any
machine on the Grid improves efficiency, as the deployment
agent may locally access the required data there. As ex-
plained later, the deployment agent, or its clones, is also
responsible for minimizing the flows of Grid management
data between the donators and the operator.

3.2 Business Model
In our model the operator of the Grid acts as a trusted

party, since he is responsible of all billing tasks3. On the
one hand, clients pay the operator for the distributed exe-
cution of their application. On the other hand, the operator
pays the resource donators for offering their idle computing
resources.

The client buys execution tickets (special tokens) from the
operator, which the deployment agent passes to the resource
donators for their services. The resource donators redeem
the received execution tickets at the operator. The execution
tickets resemble a sort of currency valid only within the Grid,
where the operator is the exclusive currency issuer. They
enable micro-payments for the consumption of computing
resources. There are 3 types of execution tickets: tickets
for CPU utilization, for memory allocation, and for data
transfer over the network. The coordinating deployment
agent has to pass execution tickets of all types to a resource
donator for exploiting his computing resources.

Execution tickets have to be protected from faking, e.g.
by cryptographic means, and from duplication, as the op-
erator keeps track of all tickets actually issued. Execution
tickets can be distributed at a fine granularity. Hence, the
loss of a single execution ticket (e.g., due to the crash of a
resource donator) is not a significant problem. In case the
deployment agent does not receive the desired service from
a resource donator for a given execution ticket, it will report
to the operator. If it turns out that a resource donator col-
lects tickets without delivering the appropriate service, the
operator may decide to remove him from the Grid. The de-
tection of such malicious donators is possible by correlating
the amount of requested tickets with the work actually per-
formed, which is measured by CPU monitoring inside the
dedicated execution environment.

3The operator may also be responsible for guaranteeing that
only applications corresponding to the legal or moral stan-
dards fixed by the donators are deployed.



3.3 Deployment of Applications
In order to start an application, the client transmits a

deployment descriptor to the operator, who will retrieve and
dispatch the application to different resource donators and
also create a deployment agent for the coordination of the
distributed execution of the application.

The deployment descriptor, sent by the client, consists of
the following elements:

• A description of the application’s code location and
structure. The client informs the operator of the ap-
plication he wants to run. The operator will then
download the application, and prepare it for resource
control, before dispatching it to the donators. The
application’s structure establishes cut points and de-
fines the different parts of the application that can
run concurrently, as well as possible computational se-
quences. The client may specify himself the compo-
sition of computations, which reflects the calculus he
desires to achieve (SIMD, MIMD, other). However,
he does not customize the part of the description re-
lated to cut points, since it is tightly dependent on the
application;

• A description of the source for input data. Usually,
scientific applications have to process large streams of
input data, which can be accessed e.g. from a web
service provided by the client. The interface of this
service is predefined by the operator and may support
various communication protocols (e.g., RMI, CORBA,
SOAP, etc.);

• A descriptor of the destination for output results.
Again, this element designates the location of an ap-
propriate service that can receive the results;

• Quality-of-service (QoS) parameters. The client may
indicate the priority of the application, the desired ex-
ecution rate, the number of redundant computations
for each element of input data (to ensure the correct-
ness of results), whether results have to be collected in-
order or may be forwarded out-of-order to the client,
etc. The QoS parameters allow the client to select an
appropriate tradeoff between execution performance,
costs, and reliability. The QoS parameters are essen-
tial to select the algorithms to be used by the deploy-
ment agent. For instance, if the client wishes in-order
results, the deployment agent may have to buffer result
data, in order to ensure the correct order.

In the following we summarize the various steps required
to deploy a client application in the Grid. Figure 3 illus-
trates some of them.

1. Prospective resource donators and clients download
and install the mobile code environment employed by
the chosen operator, in order to be able to run the com-
putations and/or to allow the execution of deployment
agents.

2. Donators register with the operator and periodically
renew their registration by telling how much they are
willing to give in the immediate future; a calibration
phase is initially run at each donator site to deter-
mine the local configuration (processor speed, avail-
able memory and disk space, quality and quantity of
network access, etc.).

3. A client registers with the operator and sends the de-
ployment descriptor (steps 1 and 2 of Figure 3).

4. The operator reads the deployment descriptor and:

(a) Chooses an appropriate set of donators accord-
ing to the required service level and to actually
available resources; a micro-payment scheme is
initiated, where fictive money is generated by the
operator and will serve as authorization tokens
for the client to ask donators for resources; a first
wave of credit is transferred to the donator set,
thus signifying that the corresponding amount of
resources are reserved.

(b) Creates a mobile agent, the deployment agent,
for coordinating the distribution, execution and
termination of the client application (step 3);
this deployment agent will shift the correspond-
ing load from the operator to the place designated
by the client, or to a donator chosen according to
load balancing principles; the deployment agent
may clone itself or move to the appropriate places
for ensuring that input and output data is trans-
ferred optimally, thus avoiding useless bottlenecks
at central places like the operator server.

(c) Downloads the client application (step 4) and
rewrites it (reification of resources, step 5); the
resulting code is signed to prevent tampering
with it, and deployed directly from the operator’s
server (step 6).

(d) Dispatches the deployment agent to the appropri-
ate initial place for execution (step 7).

5. The deployment agent launches the distributed com-
putation by indicating (step 8) to each donator-side
task where to locate its respective share of input data
(step 9), and starts monitoring the computation.

6. The deployment agent acts as a relay between the
operator and the donators. The agent receives reg-
ular status reports from the various locations of the
resource-reified application (step 10); this enables him
to monitor the progress of the computations, and to
detect problems like crashes and to assist in the recov-
ery (e.g. by preparing a fresh copy of the appropri-
ate input data, or by finding a new donator to take
over the corresponding task); the status reports are
filtered and forwarded to the operator (step 11) in or-
der to help maintaining a reasonably good view of the
global situation (the operator might decide to sched-
ule a second application on under-utilized donators);
when necessary, the operator will ask the client for
more credit (step 12), who will then buy more au-
thorization tokens from the operator (step 13). The
deployment agent then passes the execution tickets to
the donators (steps 14 and 15)

7. When results have to be collected, the deployment
agent may clone or migrate to the destination (step
16) and coordinate the incoming flows of data (step
17). He may perform a last filtering and integrity con-
trol of data before it is definitely stored.



We favored this model over a completely decentralized
peer-to-peer setting, since it simplifies the implementation
of a global strategy for load balancing and ensures that some
trusted party – the operator – can control the computations
as they progress. In this approach, the operator also is in a
natural position for managing all operations related to the
validation of client-side payments and corresponding autho-
rizations. Using mobile code for the deployment agent en-
sures that the server of the operator does not become a bot-
tleneck and a single point of failure. In the current model,
the application code has to be transferred to the operator’s
computer, since it needs to be checked for security purposes
(e.g. by code inspection), to be prepared for billing and ac-
counting (using resource reification), and to be partitioned
according to the deployment descriptor.

Currently, in order to simplify the deployment of the ded-
icated execution environment, resource reification is per-
formed at the operator’s site. However, this might also
occur at the donator sites, at the expense of possibly trans-
forming the same application in the same way on n sites,
hence a waste of resources. Another disadvantage is that
the donators would be in direct contact with the end-client:
this hampers the transparency of our current proposal, and
might have practical inconveniences by short-circuiting the
trusted third-party that the operator implements (e.g. the
application could no longer be verified and digitally signed
by the operator, which has a recognized certificate).

4. USING JAVA FOR THE DISTRIBUTION
OF COMPUTATIONS

Here we motivate the use of Java [15] for the implemen-
tation of distributed computations and their distribution
within a network. In our model we use Java-based mo-
bile agents for the distribution of deployment agents (to a
server specified by the client) and of computational tasks (to
resource donators). A secure Java-based kernel, the Java-
GridKernel, serves as execution platform for deployed com-
ponents in both cases. In that way, we leverage the benefits
of Java and of mobile code, while at the same time offering
enhanced security to protect hosts from faulty applications.

4.1 Why Java?
Recently, platforms for Grid computing have emerged that

are implemented in Java. For instance, Parabon offers an
infrastructure for Grid computing which is based completely
on Java. In fact, the Java language offers several features
that ease the development and deployment of a software en-
vironment for Grid computing. Its network-centric approach
and its built-in support for mobile code enable the distribu-
tion of computational tasks to different computer platforms.

Java runtime systems are available for most hardware
platforms and operating systems. Because of the hetero-
geneity of the hardware and of operating systems employed
by Internet users, it is crucial that a platform for large-scale
Grid computing be available for a large variety of differ-
ent computer systems. Consequently, a Java-based platform
potentially allows every computer in the Internet to be ex-
ploited for distributed, large-scale computations, while at
the same time the maintenance costs for the platform are
minimal (“write once, run everywhere”).

Apart from its portability and compatibility, language
safety and a sophisticated security model with flexible ac-

cess control are further frequently cited advantages of Java.
As security is of paramount importance for the acceptance
of a platform for Grid computing, the security and safety
features of Java are highly appreciated in this context.

4.2 Performance Issues
Java has its origins in the development of portable Inter-

net applications. The first implementations of Java runtime
systems were interpreters that inefficiently executed Java
Virtual Machine (JVM) bytecode [19] on client machines.
Also, several features of the Java programming language
impact performance: the fact that it is a type safe, object-
oriented, general-purpose programming language, with au-
tomatic memory management, and that its implementation
does not directly support arrays of rank greater than one,
means that its execution may be less efficient compared to
more primitive or specialized languages like C and Fortran.

However, optimizations performed by current state-of-
the-art Java runtime systems include the removal of array
bounds checking, efficient runtime type checking, method
inlining, improved register allocation, and the removal of
unnecessary synchronization code. See [18] for a survey of
current compilation and optimization techniques that may
boost the performance of Java runtime systems for scientific
computing. In [21] the authors report that some Java appli-
cations already achieve 90% of the performance of equivalent
compiled Fortran programs.

Considering the advantages of Java for the development
and deployment of platforms for Grid computing, we think
that a minor loss of performance can be accepted. Further-
more, the availability of more nodes where distributed com-
putations can be carried out may often outweigh minor per-
formance losses on each node. Ultimately, we are confident
that maturing Java runtime systems will offer continuous
performance improvements in the future.

4.3 Security Considerations
A high level of security is crucial for the acceptance of

a platform for Grid computing. At first glance, Java run-
time systems seem to offer comprehensive security features
that meet the requirements of an execution environment for
Grid computing: language safety [26], classloader names-
paces and access control based on dynamic stack introspec-
tion. Despite these advantages, current Java runtime sys-
tems are not able to protect the host from faulty (i.e. mali-
cious or simply bugged) applications.

In the following we point out serious deficiencies of Java
that may be exploited by malicious code to compromise the
security and integrity of the platform (for further details,
see [8]). Above all, Java is lacking a task model that could
be used to completely isolate software components (applica-
tions and system services) from each other. A related prob-
lem is that, unfortunately, thread termination in Java is an
inherently unsafe operation, which may e.g. leave shared
objects, such as certain internals of the JVM, in an incon-
sistent state. Also related to the lack of task model is the ab-
sence of accounting and control of resource consumption (in-
cluding but not limited to memory, CPU, threads, and net-
work bandwidth). Concerning the implementation of cur-
rent standard Java implementations, an issue is that several
bytecode verifiers sometimes accept bytecode that does not
represent a valid Java program: the result of the execution
of such bytecode is undefined, and it may even compromise
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Figure 3: Application Distribution



the integrity of the Java runtime system. Finally, while the
security model of Java offers great flexibility in terms of im-
plementing access control, it lacks central control: security
checks are scattered throughout the classes, and it is next
to impossible to determine with certainty whether a given
application actually enforces a particular security policy.

All these shortcomings have to be considered in the design
and implementation of Java-based platforms for Grid com-
puting. Therefore, massive re-engineering efforts are needed
to create sufficiently secure and reliable platforms.

5. THE JAVAGRIDKERNEL FOR THE SE-
CURE EXECUTION OF MOBILE CODE

We have designed JavaGridKernel, a Java-based middle-
ware that provides solutions to the security problems men-
tioned before and, hence, represents a state-of-the-art plat-
form for the creation of secure environments for Grid com-
puting. Several researchers have stressed the importance of
multi-tasking features for Java-based middleware [2]. An
abstraction similar to the process concept in operating sys-
tems is necessary in order to create secure execution environ-
ments for mobile code. However, many proposed solutions
were either incomplete or required modifications of the Java
runtime system.

In contrast, the JavaGridKernel has been designed to en-
sure important security guarantees without requiring any
native code or modifications of the underlying Java imple-
mentation. The JavaGridKernel builds on the recent Java
Isolation API [16], which offers the abstraction of Isolates,
which fulfill a similar purpose as processes in operating sys-
tems and can be used to strongly protect Java components
from each other, even within the same JVM. The Isolation
API ensures that there is no sharing between different Iso-
lates. Even static variables and class locks of system classes
are not shared between Isolates in order to prevent unwanted
side effects. Isolates cannot directly communicate object ref-
erences by calling methods in each other, but have to resort
to special communication links which allow to pass objects
by deep copy. An Isolate can be terminated in a safe way,
releasing all its resources without hampering any other iso-
late in the system. The Java Isolation API is supposed to be
supported by future versions of the JDK. For the moment, it
is necessary to resort to research JVMs that already provide
the Isolation API, such as the MVM [10].

One crucial feature missing in Java is resource manage-
ment, i.e., accounting and limiting the resource consump-
tion (e.g., CPU and memory) of Java components. In
the context of the JavaGridKernel, resource management is
needed to prevent malicious or erroneous code from overus-
ing the resources of the host where it has been deployed
(e.g., denial-of-service attacks). Moreover, it enables the
charging of clients for the consumption of their deployed
applications. To address these issues, we have developed J-
RAF24, The Java Resource Accounting Framework, Second
Edition, which enables fully portable resource management
in standard Java environments [7, 6]. J-RAF2 transforms
application classes and libraries, including the Java Devel-
opment Kit, in order to expose details concerning their re-
source consumption during execution. J-RAF2 rewrites the
bytecode of Java classes before they are loaded by the JVM.
Currently, J-RAF2 addresses CPU, memory and network

4http://www.jraf2.org/

bandwidth control. For memory control, object allocations
are intercepted in order to verify that no memory limit is ex-
ceeded. For CPU control, the number of executed bytecode
instructions are counted and periodically the system checks
whether a running thread exceeds its granted CPU quota.
This implements a rate-based control policy; an additional
upper hard limit on the total CPU consumed by any given
computation can also be set and an associated overuse han-
dler would then send an appropriate message to the deploy-
ment agent, to displace the task and hopefully prevent the
loss of intermediate results. Control of network bandwidth
is achieved by wrapping the standard input-output libraries
of the JDK inside our own classes. J-RAF2 has been suc-
cessfully tested in standard J2SE, J2ME, and J2EE environ-
ments. Due to special implementation techniques, execution
time overhead for resource management is reasonably small,
about 20–30%.

The Java Isolation API and J-RAF2 together provide
the basis for the JavaGridKernel, which offers operating
system-like features: Protection of components, safe com-
munication, safe termination of components, and resource
management. The JavaGridKernel extends these features
with mechanisms to dynamically deploy, install, and moni-
tor Java components. It should be noted that these mecha-
nisms apply to the Java Virtual Machine and the associated
executable bytecode representation: this approach is there-
fore in reality not restricted to programs written in the Java
source language, but extends to all languages implemented
on the JVM.

In the past we used the J-SEAL2 mobile object kernel [4,
5] to implement an infrastructure for Grid computing. J-
SEAL2 severely restricted the programming model of Java
in order to enforce protection, safe communication, and ter-
mination of components. As the Java Isolation API pro-
vides these features in a standardized way without restrict-
ing the programming model, it is better suited for a Grid
environment where also components designed without these
J-SEAL2 specific restrictions in mind should be deployed.

The JavaGridKernel is perfectly suited for the develop-
ment of platforms for Grid computing: It is small in size
(only a few additional classes are required at run-time) and
compatible with the Java 2 platform (but requires the Java
Isolation API). Therefore, the distribution and installation
of the kernel itself incurs only minimal overhead. The Jav-
aGridKernel supports mobile code, which enables the dis-
tribution and remote maintenance of scientific applications.
Finally, whereas scientific applications make heavy use of
CPU and memory resources, the resource control features
provided by J-RAF2 ensure a fair distribution of computa-
tional resources among multiple applications and prohibit
an overloading of host machines. As explained below, re-
source control also provides additional security by thwarting
dishonest behaviours on the donator side, thus making the
model more attractive from an economic perspective.

The JavaGridKernel provides five special components: A
mediator component to control the execution of uploaded
applications, a network service to receive application code
(Net-App service), a second network service allowing appli-
cations to receive input data and to transmit their results
(Net-Data service), a system monitor to prevent an over-
loading of the machine, as well as a monitor window that
displays information regarding the running applications, the
elapsed time, etc. to the resource donator. In the following



we give an overview of these components:

• The mediator is responsible for the installation and
termination of applications, as well as for access and
resource control. It utilizes the Net-App service to
receive control messages from the deployment agents
that coordinate the distributed applications. It re-
ceives application archives, which contain the appli-
cation code as well as a deployment descriptor. The
deployment descriptor comprises a unique identifier of
the application, as well as information concerning the
resource limits and the priority of the application. The
unique application identifier is needed for dispatching
messages to the appropriate application. Requests to
terminate an application are also received from the
Net-App service. The mediator component ensures
that applications employ only the Net-Data service
and guarantees that an application only receives its
own input data and that its output data is tagged by
the application identifier. The mediator uses the sys-
tem monitor in order to detect when the machine is
busy; in this case, applications are suspended until the
system monitor reports idle resources.

• The Net-App service is responsible for exchanging sys-
tem messages with the coordinating deployment agent.
When the platform is started, the Net-App service con-
tacts the operator’s server, which may transfer applica-
tion archives to the platform. Optionally, a persistency
service can be used to cache the code of applications
that shall be executed for a longer period of time. The
Net-App service also receives requests to terminate ap-
plications that are not needed anymore.

• The Net-Data service enables applications to receive
input data and to deliver the results of their computa-
tion to the coordinating server. Messages are always
tagged by an application identifier in order to asso-
ciate them with an application. Access to the Net-
Data service is verified by the mediator component.
Frequently, continuous streams of data have to be pro-
cessed by applications. The Net-Data service supports
(limited) buffering of data to ensure that enough input
data is available to running applications.

• The system monitor has to detect whether the machine
is busy or idle. If the computer is busy, applications
shall be suspended in order to avoid an overloading
of the machine. If the computer is idle, applications
shall be started or resumed. An implementation of the
system monitor may employ information provided by
the underlying operating system. However, such an
approach compromises the full portability of all other
components, since it relies on system-dependent in-
formation. Therefore, we follow a different approach:
J-RAF2 enables the reification of the CPU consump-
tion of applications [7, 24], which allows to monitor
the progress of applications. If the number of exe-
cuted instructions is low (compared to the capacity of
the hosting computer), even though applications are
ready to run, the system monitor assumes that the
computer is busy. Therefore, it contacts the mediator
component in order to suspend computations. If, on
the other hand, at the same time, requests for tickets

originate from the same donator, it may be interpreted
as malicious behaviour. Periodically, the system mon-
itor resumes its activity in order to notice idle com-
puting resources. When the computer becomes idle,
all applications are resumed.

• The monitoring window presents information about
the past and current work load of the system to the
resource donator. It shows detailed status information
of the running applications, the time elapsed for the
computations, the estimated time until completion, if
available, as well as some general information regard-
ing the purpose of the computation. As the resource
donator is in control of his system, it is important to
show him detailed information of the utilization of his
machine.

The mobile code execution environment for the deploy-
ment agents is based on the JavaGridKernel as well. But as
the deployment agents stems from the operator, a trusted
party, the security settings are relaxed. There are a few
mandatory services needed by the deployment agent: access
to the client web services that provide the input data and
consume the output results, as well as network access for
the communication with resource donators and the opera-
tor. Communication with the resource donators is necessary
for the transmission of the application data, while communi-
cation with the operator is essential for the implementation
of a global strategy for load balancing and for payment is-
sues.

Regarding mobile code security, let us recall that the re-
search community has not yet found a complete and gen-
eral solution to the problem of malicious (donator) hosts,
thus low-level tampering with Java bytecode (even cryp-
tographically signed) or with the JVM is always possible
if the attacker is sufficiently motivated, e.g. if a donator
wants to steal results belonging to the client, or to hack
the resource consumption mechanism in order to artificially
increase his income. Our portable resource control mecha-
nisms can nevertheless be exploited in several ways to detect
such behaviours. First, if it is possible to determine stati-
cally the amount of resources required to achieve the given
task, this detection will be trivial even across heterogenous
machines, since J-RAF2 expresses CPU resource quantities
in a portable unit of measurement (the bytecode). Second,
it will always be possible to compare total consumptions at
various donator machines and to correlate them with the size
of the requested computations. The malicious host problem
is however present in grid computing in general, not only
with the mobile code approach proposed here.

6. RELATED WORK
The primary purpose of mobile code is to distribute ap-

plications and services on heterogeneous networks. Many
authors relate mobile code, and more often mobile agents
as a practical technology for implementing load-balancing
in wide-area networks like the Internet. Load-balancing can
be either static (with single-hop agents, in the sense that
once a task is assigned to a host, it does not move anymore)
or dynamic (with multi-hop mobile agents enabling process
migration). A survey of load-balancing systems with mobile
agents is presented in [14]. Security and efficiency have im-
mediately been recognized as crucial by the research commu-
nity, but it was necessary to wait for technology to mature.



Resource monitoring and control is needed for implementing
load-balancing, and more generally for realizing secure and
efficient systems, but is unavailable in standard Java, and
particularly difficult to implement in a portable way. For
instance, Sumatra [1] is a distributed resource monitoring
system based on a modified JVM called Komodo. See [7]
for a further study on the portability of resource monitoring
and control systems in Java.

According to [25], almost all Grid resource allocation and
scheduling research follows one of two paradigms: central-
ized omnipotent resource control - which is not a scalable
solution - or localized application control, which can lead to
unstable resource assignments as “Grid-aware” applications
adapt to compete for resources. Our primary goal is however
not to pursue research on G-Commerce [25], even though we
sketch an economical model based on virtual currency. For
these reasons, our approach is hybrid. We relax the con-
servative, centralized resource control model by proposing
an intermediary level with our deployment agents, designed
to make the architecture more scalable. We have identi-
fied a similar notion of mobile coordination agent in [11],
with the difference that our agents do not only implement
application-level coordination (synchronization, collection of
intermediate results), but also management-level activities
(local collection and filtering of load-balancing data), follow-
ing the general approach we exposed in [23]. As described in
[22], control data generated by distributed resource control
systems may be huge - and even higher in G-commerce sys-
tems, because of bidding and auctioning messages - and mo-
bile agents may thus profitably be dispatched at the worker
nodes for filtering the data flows at their source. We pro-
pose a further level of filtering to be accomplished by the
deployment agents; this is even more necessary as we intend
to control all three resources (CPU, memory and network).
CPU is widely regarded as the most important factor. In
[17] the authors propose to place worker agents within a
Grid according not only to CPU load, but also to network
bandwidth requirements; they relate a speed improvement
of up to 40%, but the measurements were made in local-area
clusters instead of dynamic sets of Internet hosts. Finally,
memory control is usually ignored, but we contend that it
has to be implemented in order to support typical scien-
tific Grid computations, since they often imply storing and
processing huge amounts of data.

Among the approaches that are not agent-based, the
Globus initiative provides a complete toolkit addressing,
among others, issues such as security, information discovery,
resource management and portability. The Globus toolkit
is being adopted as a standard by most multi-organisational
Grids [12, 13]. The latest major version, Globus Toolkit 3,
allows for the execution of Java code; it has a resource man-
agement facility, which is partly based on native code, and is
thus not entirely portable. Resource management in Globus
is not designed to be as accurate as provided by J-RAF2,
and more specifically, resource accounting is not provided,
which prohibits our fine-grained monitoring and incentive of
usage-based payment for offered computing resources. As
several aspects in Globus 3, the protection between jobs
is biased towards the availability of the Unix kind of pro-
cesses; this provides for good security, but is more expen-
sive in memory space than Java isolates, which are designed
for security without compromising the possibility of sharing
Java bytecode between protection domains. Finally, the ba-

sic job deployment and coordination mechanisms of Globus
are not as flexible as the one permitted by the presently
proposed mobile-agent based approach. These are a few as-
pects where we can propose some enhancements, but one
should not be mistaken about the fact that Globus is an ac-
complished framework, whereas this paper essentially repre-
sents a theoretical work, based on a set of concrete building
blocks.

Compared to a previous workshop position paper of
ours [3] the model presented here relies on concepts and tools
that are more mature and provide better guarantees of se-
curity and portability, while enabling a much more natural
programming model than the one imposed by the J-SEAL2
mobile agent platform [4].

7. CONCLUSION
Our goal is to customize computations on open Internet

Grids. To this end, we believe that a Grid environment
should provide high-level primitives enabling the reuse and
combination of existing programs and distributed collections
of data, without forcing the client to dive into low-level pro-
gramming details; the Unix scripting approach is our model,
and this translates into our abstract deployment descrip-
tor proposal. From the implementation point of view, this
translates into a mobile deployment agent, which synthesizes
and enhances the benefits of several previous approaches:
the deployment agent optimizes its own placement on the
Grid, and consequently it reduces the overall load by min-
imizing the communications needed for application-level as
well as management-level coordination. There are of course
still some open questions. The first pertains to the actual
efficiency of the proposed model, which cannot be entirely
determined before the complete implementation of the dis-
tributed control mechanisms. We have however tried to
address the performance issue both at the host level, by
proposing a solution which tries to minimize the manage-
ment overhead, and at the global level, with a mobile agent-
based approach which makes the whole system more scal-
able. The second concerns human factors such as validating
the economical model (will it be attractive enough to gener-
ate real revenues?), or enabling the donator to decide on the
lawfulness or ethics of computations submitted to him. This
paper however concentrates on technological aspects, and
claims that the comprehensive combination of a pure Java
implementation enhanced with a secure, resource controlled
execution platform is a unique asset for the portability, secu-
rity and efficiency required for the success of Internet-based
Grid computing.
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